A monthly tidal envelope classification for semidiurnal regimes in terms of the relative proportions of the S<sub>2</sub>, N<sub>2</sub>, and M<sub>2</sub> constituents

Author:

Byun Do-Seong,Hart Deirdre E.ORCID

Abstract

Abstract. Daily tidal water level variations are a key control on shore ecology, on access to marine environments via ports, jetties, and wharves, on drainage links between the ocean and coastal hydrosystems such as lagoons and estuaries, and on the duration and frequency of opportunities to access the intertidal zone for recreation and food harvesting purposes. Further, high perigean spring tides interact with extreme weather events to produce significant coastal inundations in low-lying coastal settlements such as on deltas. Thus an understanding of daily through monthly tidal envelope characteristics is fundamental for resilient coastal management and development practices. For decades, scientists have described and compared daily tidal forms around the world's coasts based on the four main tidal amplitudes. Our paper builds on this “daily” method by adjusting the constituent analysis to distinguish between the different monthly types of tidal envelopes occurring in the semidiurnal coastal waters around New Zealand. Analyses of tidal records from 27 stations are used alongside data from the FES2014 tide model in order to find the key characteristics and constituent ratios of tides that can be used to classify monthly tidal envelopes. The resulting monthly tidal envelope classification approach described (E) is simple, complementary to the successful and much used daily tidal form factor (F), and of use for coastal flooding and maritime operation management and planning applications in areas with semidiurnal regimes.

Publisher

Copernicus GmbH

Subject

Cell Biology,Developmental Biology,Embryology,Anatomy

Reference27 articles.

1. Byun, D.-S. and Hart, D. E.: Predicting tidal heights for new locations using 25h of in situ sea level observations plus reference site records: A complete tidal species modulation with tidal constant corrections, J. Atmos. Ocean. Tech., 32, 350–371, 2015.

2. Carrère L., Lyard, F., Cancet, M., Guillot, A., and Picot, N.: FES 2014, a new tidal model – validation results and perspectives for improvements, Presentation to ESA Living Planet Conference, Prague, 2016.

3. Cartwright, D. E.: Tides: A scientific history, Cambridge University Press, Cambridge, 1999.

4. Courtier, A.: Marées. Service Hydrographique de la Marine, Paris, available at: https://journals.lib.unb.ca/index.php/ihr/article/download/27428/1882520184 (last access: 28 November 2019), 1938.

5. Defant, A.: Ebb and flow: the tides of earth, air, and water, University of Michigan Press, Ann Arbor, 1958.

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3