Intercomparisons of Tracker v1.1 and four other ocean particle-tracking software packages in the Regional Ocean Modeling System
-
Published:2024-04-29
Issue:8
Volume:17
Page:3341-3356
-
ISSN:1991-9603
-
Container-title:Geoscientific Model Development
-
language:en
-
Short-container-title:Geosci. Model Dev.
Author:
Xiong JilianORCID, MacCready Parker
Abstract
Abstract. Particle tracking is widely utilized to study transport features in a range of physical, chemical, and biological processes in oceanography. In this study, a new offline particle-tracking package, Tracker v1.1, is introduced, and its performance is evaluated in comparison to an online Eulerian dye, one online particle-tracking software package, and three offline particle-tracking software packages in a small, high-resolution model domain and a large coarser model domain. It was found that both particle and dye approaches give similar results across different model resolutions and domains when they were tracking the same water mass, as indicated by similar mean advection pathways and spatial distributions of dye and particles. The flexibility of offline particle tracking and its similarity against online dye and online particle tracking make it a useful tool to complement existing ocean circulation models. The new Tracker was shown to be a reliable particle-tracking package to complement the Regional Ocean Modeling System (ROMS) with the advantages of platform independence and speed improvements, especially in large model domains achieved by the nearest-neighbor search algorithm. Lastly, trade-offs of computational efficiency, modifiability, and ease of use that can influence the choice of which package to use are explored. The main value of the present study is that the different particle and dye tracking codes were all run on the same model output or within the model that generated the output. This allows some measure of intercomparison between the different tracking schemes, and we conclude that all choices that make each tracking package unique do not necessarily lead to very different results.
Funder
National Science Foundation Office of Naval Research
Publisher
Copernicus GmbH
Reference62 articles.
1. Aijaz, S., Colberg, F., and Brassington, G. B.: Lagrangian and Eulerian modelling of river plumes in the Great Barrier Reef system, Australia, Ocean Model., 188, 102310, https://doi.org/10.1016/j.ocemod.2023.102310, 2024. 2. Alosairi, Y., Al-Salem, S. M., and Al Ragum, A.: Three-dimensional numerical modelling of transport, fate and distribution of microplastics in the northwestern Arabian/Persian Gulf, Mar. Pollut. Bull., 161, 111723, https://doi.org/10.1016/j.marpolbul.2020.111723, 2020. 3. Andruszkiewicz, E. A., Koseff, J. R., Fringer, O. B., Ouellette, N. T., Lowe, A. B., Edwards, C. A., and Boehm, A. B.: Modeling environmental DNA transport in the coastal ocean using Lagrangian particle tracking, Front. Mar. Sci., 6, 477, https://doi.org/10.3389/fmars.2019.00477, 2019. 4. Arakawa, A. and Lamb, V. R.: Computational design of the basic dynamical processes of the UCLA general circulation model, edited by: Arakawa, A. and Lamb, V. R., in: General circulation models of the atmosphere, methods in computational physics: Advances in research and application, vol. 17, 173–265, Elsevier, Amsterdam, https://doi.org/10.1016/B978-0-12-460817-7.50009-4, 1977. 5. Banas, N. S., MacCready, P., and Hickey, B. M.: The Columbia River plume as cross-shelf exporter and along-coast barrier, Cont. Shelf Res., 29, 292–301, https://doi.org/10.1016/j.csr.2008.03.011, 2009.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|