FUME 2.0 – Flexible Universal processor for Modeling Emissions

Author:

Belda MichalORCID,Benešová NinaORCID,Resler JaroslavORCID,Huszár PeterORCID,Vlček Ondřej,Krč PavelORCID,Karlický JanORCID,Juruš Pavel,Eben Kryštof

Abstract

Abstract. This paper introduces FUME 2.0, an open-source emission processor for air quality modeling, and documents the software structure, capabilities, and sample usage. FUME provides a customizable framework for emission preparation tailored to user needs. It is designed to work with heterogeneous emission inventory data, unify them into a common structure, and generate model-ready emissions for various chemical transport models (CTMs). Key features include flexibility in input data formats, support for spatial and temporal disaggregation, chemical speciation, and integration of external models like MEGAN. FUME employs a modular Python interface and PostgreSQL/PostGIS backend for efficient data handling. The workflow comprises data import, geographical transformation, chemical and temporal disaggregation, and output generation steps. Outputs for mesoscale CTMs CMAQ, CAMx, and WRF-Chem and the large-eddy-simulation model PALM are implemented along with a generic NetCDF format. Benchmark runs are discussed on a typical configuration with cascading domains, with import and preprocessing times scaling near-linearly with grid size. FUME facilitates air quality modeling from continental to regional and urban scales by enabling effective processing of diverse inventory datasets.

Funder

Technology Agency of the Czech Republic

European Regional Development Fund

European Climate, Infrastructure and Environment Executive Agency

Horizon 2020 Framework Programme

Publisher

Copernicus GmbH

Reference40 articles.

1. ARAMIS: Air quality Research, Assessment and Monitoring Integrated System (information on the project in the on-line database of the Czech research), https://starfos.tacr.cz/en/projekty/SS02030031 (last access: 16 October 2023), 2023a. a

2. ARAMIS: Air quality Research, Assessment and Monitoring Integrated System (project website), https://www.projekt-aramis.cz/ (last access: 16 October 2023), 2023b. a, b

3. Belda, M., Krč, P., Resler, J., Huszár, P., Benešová, N., Karlický, J., and Juruš, P.: FUME-dev/fume: Official 2.0r1 release, Zenodo [code], https://doi.org/10.5281/zenodo.10814674, 2024. a

4. Benešová, N., Belda, M., Resler, J., Huszár, P., and Vlček, O.: FUME user cases, National Repository [data set], https://doi.org/10.48700/datst.bf6s2-5tq48, 2023.

5. Bieser, J., Aulinger, A., Matthias, V., Quante, M., and Builtjes, P.: SMOKE for Europe – adaptation, modification and evaluation of a comprehensive emission model for Europe, Geosci. Model Dev., 4, 47–68, https://doi.org/10.5194/gmd-4-47-2011, 2011. a

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3