CAR36, a regional high-resolution ocean forecasting system for improving drift and beaching of Sargassum in the Caribbean archipelago

Author:

Cailleau Sylvain,Bessières Laurent,Chiendje LéonelORCID,Dubost Flavie,Reffray Guillaume,Lellouche Jean-Michel,van Gennip Simon,Régnier Charly,Drevillon Marie,Tressol Marc,Clavier Matthieu,Temple-Boyer Julien,Berline LéoORCID

Abstract

Abstract. The stranding of Sargassum seaweed on the Caribbean archipelago beaches constitutes real socio-economic, ecological and health problems. Météo-France currently operates a model of Sargassum drift forecast (called MOTHY) forced by ocean currents from the global analysis and forecasting system GLO12 at 1/12° (∼9 km over the Caribbean) operated by Mercator Ocean International (MOi). In order to improve the Météo-France drift forecast, MOi has developed a regional high-resolution ocean forecasting system CAR36 at 1/36° (∼3 km) centred in the Caribbean archipelago region. In addition to a finer spatial resolution, this system was designed to resolve higher-frequency signals such as the tidal forcing and to use hourly atmospheric forcing including the inverse barometer effect. Here the added value of the CAR36 system relative to GLO12 is evaluated with particular focus on the reproduction of meso- and sub-mesoscale structures representing key features of the Caribbean region dynamics and therefore Sargassum transport. The realism of the local dynamics was examined with standard statistical validation diagnostics using satellite data (sea surface height, sea surface temperature, Sargassum detection) and drifting buoys, together with more process-oriented diagnostics such as eddy detection and tracking across the domain. GLO12 and CAR36 hindcast simulations were compared over the year 2019. CAR36 showed marginally better scores using OceanPredict diagnostics (https://oceanpredict.org/, last access: 10 April 2024). The dynamics of a westward-propagating North Brazil Current (NBC) eddy from its entry into the domain to its dissipation were found to be more realistic in CAR36, especially at the end of its lifetime when it collides with the Caribbean archipelago. The transfer of kinetic energy from the eddy dissipating westward into the Caribbean Sea was diagnosed as more pronounced for CAR36, corresponding to filamentary structures crossing the Caribbean archipelago and resulting in part from the friction of the NBC eddy along the islands to the east. Using detection from satellites, aggregation of Sargassum around eddies or along filaments suggests that CAR36 should improve the algae drift forecasts.

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3