Improved method for linear carbon monoxide simulation and source attribution in atmospheric chemistry models illustrated using GEOS-Chem v9

Author:

Fisher Jenny A.ORCID,Murray Lee T.ORCID,Jones Dylan B. A.,Deutscher Nicholas M.ORCID

Abstract

Abstract. Carbon monoxide (CO) simulation in atmospheric chemistry models is frequently used for source–receptor analysis, emission inversion, interpretation of observations, and chemical forecasting due to its computational efficiency and ability to quantitatively link simulated CO burdens to sources. While several methods exist for modeling CO source attribution, most are inappropriate for regions where the CO budget is dominated by secondary production rather than direct emissions. Here, we introduce a major update to the linear CO-only capability in the GEOS-Chem chemical transport model that for the first time allows source–region tagging of secondary CO produced from oxidation of non-methane volatile organic compounds. Our updates also remove fundamental inconsistencies between the CO-only simulation and the standard full chemistry simulation by using consistent CO production rates in both. We find that relative to the standard chemistry simulation, CO in the original CO-only simulation was overestimated by more than 100 ppb in the model surface layer and underestimated in outflow regions. The improved CO-only simulation largely resolves these discrepancies by improving both the magnitude and location of secondary production. Despite large differences between the original and improved simulations, however, model evaluation with the global dataset used to benchmark GEOS-Chem shows negligible change to the model's ability to match the observations. This suggests that the current GEOS-Chem benchmark is not well suited to evaluate model changes in regions influenced by biogenic emissions and chemistry, and expanding the dataset to include observations from biogenic source regions (including those from recent aircraft campaigns) should be a priority for the GEOS-Chem community. Using Australasia as a case study, we show that the new ability to geographically tag secondary CO production provides significant added value for interpreting observations and model results in regions where primary CO emissions are low. Secondary production dominates the CO budget across much of the world, especially in the Southern Hemisphere, and we recommend future model–observation and multi-model comparisons implement this capability to provide a more complete understanding of CO sources and their variability.

Funder

Australian Research Council

Publisher

Copernicus GmbH

Reference49 articles.

1. Bauwens, M., Stavrakou, T., Müller, J.-F., De Smedt, I., Van Roozendael, M., van der Werf, G. R., Wiedinmyer, C., Kaiser, J. W., Sindelarova, K., and Guenther, A.: Nine years of global hydrocarbon emissions based on source inversion of OMI formaldehyde observations, Atmos. Chem. Phys., 16, 10133–10158, https://doi.org/10.5194/acp-16-10133-2016, 2016.

2. Bey, I., Jacob, D. J., Logan, J. A., and Yantosca, R. M.: Asian chemical outflow to the Pacific in spring: Origins, pathways, and budgets, J. Geophys. Res., 106, 23097–23113, https://doi.org/10.1029/2001JD000806, 2001.

3. Buchholz, R., Paton-Walsh, C., Griffith, D., Kubistin, D., Caldow, C., Fisher, J., Deutscher, N., Kettlewell, G., Riggenbach, M., Macatangay, R., Krummel, P., and Langenfelds, R.: Source and meteorological influences on air quality (CO, CH4 & CO2) at a Southern Hemisphere urban site, Atmos. Environ, 126, 274–289, https://doi.org/10.1016/j.atmosenv.2015.11.041, 2016.

4. Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Huie, R. E., Kolb, C. E., Kurylo, M. J., Orkin, V. L., Wilmouth, D. M., and Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 18, JPL Publication 15-10, Jet Propulsion Laboratory, Pasadena, available at: http://jpldataeval.jpl.nasa.gov (last access: October 2017), 2015.

5. Chen, Y., Li, Q., Randerson, J. T., Lyons, E. A., Kahn, R. A., Nelson, D. L., and Diner, D. J.: The sensitivity of CO and aerosol transport to the temporal and vertical distribution of North American boreal fire emissions, Atmos. Chem. Phys., 9, 6559–6580, https://doi.org/10.5194/acp-9-6559-2009, 2009.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3