A mechanism for heating electrons in the magnetopause current layer and adjacent regions
-
Published:2011-12-23
Issue:12
Volume:29
Page:2305-2316
-
ISSN:1432-0576
-
Container-title:Annales Geophysicae
-
language:en
-
Short-container-title:Ann. Geophys.
Author:
Roux A.,Robert P.,Le Contel O.,Angelopoulos V.,Auster U.,Bonnell J.,Cully C. M.,Ergun R. E.,McFadden J. P.
Abstract
Abstract. Taking advantage of the string-of-pearls configuration of the five THEMIS spacecraft during the early phase of their mission, we analyze observations taken simultaneously in the magnetosheath, the magnetopause current layer and the magnetosphere. We find that electron heating coincides with ultra low frequency waves. It seems unlikely that electrons are heated by these waves because the electron thermal velocity is much larger than the Alfvén velocity (Va). In the short transverse scale (k⊥ρi >> 1) regime, however, short scale Alfvén waves (SSAWs) have parallel phase velocities much larger than Va and are shown to interact, via Landau damping, with electrons thereby heating them. The origin of these waves is also addressed. THEMIS data give evidence for sharp spatial gradients in the magnetopause current layer where the highest amplitude waves have a large component δB perpendicular to the magnetopause and k azimuthal. We suggest that SSAWs are drift waves generated by temperature gradients in a high beta, large Ti/Te magnetopause current layer. Therefore these waves are called SSDAWs, where D stands for drift. SSDAWs have large k⊥ and therefore a large Doppler shift that can exceed their frequencies in the plasma frame. Because they have a small but finite parallel electric field and a magnetic component perpendicular to the magnetopause, they could play a key role at reconnecting magnetic field lines. The growth rate depends strongly on the scale of the gradients; it becomes very large when the scale of the electron temperature gradient gets below 400 km. Therefore SSDAW's are expected to limit the sharpness of the gradients, which might explain why Berchem and Russell (1982) found that the average magnetopause current sheet thickness to be ~400–1000 km (~500 km in the near equatorial region).
Publisher
Copernicus GmbH
Subject
Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics
Reference23 articles.
1. Anderson, R. R., Harvey, C. C., Hoppe, M. M., Tsurutani, B. T., Eastman, T. E., and Etcheto, J.: Plasma waves near the magnetopause, J. Geophys. Rev., 87, 2087–2107, 1982. 2. Angelopoulos, V., Sibeck, D., Carlson, C. W., McFadden, J. P., Larson, D., Lin, R. P., Bonnell, J. W., Mozer, F. S., Ergun, R., Cully, C., Glassmeier, K. H., Auster, U., Roux, A., Le Contel, O., Frey, S., Phan, T., Mende, S., Frey, H., Donovan, E., Russell, C. T., Strangeway, R., Liu, J., Mann, I., Rae, J., Raeder, J., Li, X., Liu, W., Singer, H. J., Sergeev, V. A., Apatenkov, S., Parks, G., Fillingim, M., and Sigwarth, J.: The THEMIS Mission, Space Sci. Rev., 141, 5–34, https://doi.org/10.1007/s11214-008-9336-1, 2008. 3. Auster, H. U., Glassmeier, K. H., Magnes, W., Aydogar, O., Baumjohann, W., Constantinescu, D., Fischer, D., Fornacon, K. H., Georgescu, E., Harvey, P., Hillenmaier, O., Kroth, R., Ludlam, M., Narita, Y., Nakamura, R., Okrafka, K., Plaschke, F., Richter, I., Schwarzl, H., Stoll, B., Valavanoglou, A., and Wiedemann, M.: The THEMIS fluxgate magnetometer, Space Sci. Rev., 141, 509–534, https://doi.org/10.1007/s11214-008-9433-1, 2008. 4. Aydemir, A. Y., Berk, H. L., Mirnov, V., Pogutse, O. P., and Rosenbluth, M. N.: Linear and non linear description of drift instabilities in a high Beta plasma, Phys. Fluids, 30, 3083–3092, 1987. 5. Belmont, G. and Rezeau, L.: Magnetopause reconnection induced by magnetosheath Hall-MHD fluctuations, J. Geophys. Res., 106, 10751–10760, 2001.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|