Pre-monsoon aerosol characteristics over the Indo-Gangetic Basin: implications to climatic impact

Author:

Srivastava A. K.,Tiwari S.,Devara P. C. S.,Bisht D. S.,Srivastava Manoj K.,Tripathi S. N.,Goloub P.,Holben B. N.

Abstract

Abstract. Sun/sky radiometer observations over the Indo-Gangetic Basin (IGB) region during pre-monsoon (from April–June 2009) have been processed to analyze various aerosol characteristics in the central and eastern IGB region, represented by Kanpur and Gandhi College, respectively, and their impacts on climate in terms of radiative forcing. Monthly mean aerosol optical depth (AOD at 500 nm) and corresponding Angstrom Exponent (AE at 440–870 nm, given within the brackets) was observed to be about 0.50 (0.49) and 0.51 (0.65) in April, 0.65 (0.74) and 0.67 (0.91) in May and 0.69 (0.45) and 0.77 (0.71) in June at Kanpur and Gandhi College, respectively. Results show a positive gradient in AOD and AE from central to eastern IGB region with the advancement of the pre-monsoon, which may be caused due to diverse geographical location of the stations having different meteorological conditions and emission sources. Relatively lower SSA was observed at the eastern IGB (0.89) than the central IGB (0.92) region during the period, which suggests relative dominance of absorbing aerosols at the eastern IGB as compared to central IGB region. The absorbing aerosol optical properties over the station suggest that the atmospheric absorption over central IGB region is mainly due to dominance of coarse-mode dust particles; however, absorption over eastern IGB region is mainly due to dominance of fine-particle pollution. The derived properties from sun/sky radiometer during pre-monsoon period are used in a radiative-transfer model to estimate aerosol radiative forcing at the top-of-the atmosphere (TOA) and at the surface over the IGB region. Relatively large TOA and surface cooling was observed at the eastern IGB as compared to the central IGB region. This translates into large heating of the atmosphere ranging from 0.45 to 0.55 K day−1 at Kanpur and from 0.45 to 0.59 K day−1 at Gandhi College.

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3