Electric field variability and classifications of Titan's magnetoplasma environment

Author:

Arridge C. S.,Achilleos N.,Guio P.

Abstract

Abstract. The atmosphere of Saturn's largest moon Titan is driven by photochemistry, charged particle precipitation from Saturn's upstream magnetosphere, and presumably by the diffusion of the magnetospheric field into the outer ionosphere, amongst other processes. Ion pickup, controlled by the upstream convection electric field, plays a role in the loss of this atmosphere. The interaction of Titan with Saturn's magnetosphere results in the formation of a flow-induced magnetosphere. The upstream magnetoplasma environment of Titan is a complex and highly variable system and significant quasi-periodic modulations of the plasma in this region of Saturn's magnetosphere have been reported. In this paper we quantitatively investigate the effect of these quasi-periodic modulations on the convection electric field at Titan. We show that the electric field can be significantly perturbed away from the nominal radial orientation inferred from Voyager 1 observations, and demonstrate that upstream categorisation schemes must be used with care when undertaking quantitative studies of Titan's magnetospheric interaction, particularly where assumptions regarding the orientation of the convection electric field are made.

Funder

European Commission

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3