IMF <i>B</i><sub><i>y</i></sub> effects in the plasma flow at the polar cap boundary

Author:

Lukianova R.,Kozlovsky A.

Abstract

Abstract. We used the dataset obtained from the EISCAT Svalbard Radar during 2000–2008 to study statistically the ionospheric convection in a vicinity of the polar cap boundary as related to IMF By conditions separately for northward and southward IMF. The effect of IMF By is manifested in the intensity and direction of the azimuthal component of ionospheric flow. The most significant effect is observed on the day and night sides whereas on dawn and dusk the effect is essentially less prominent. However, there is an asymmetry with respect to the noon-midnight meridian. On the day side the intensity of By-related azimuthal flow is maximal exactly at noon, whereas on the night side the maximum is shifted toward the post-midnight hours (~03:00 MLT). On the dusk side the relative reduction of the azimuthal flow is much larger than that on the dawn side. Overall, the magnetospheric response to IMF By seems to be stronger in the 00:00–12:00 MLT sector compared to the 12:00–24:00 MLTs. Quantitative characteristics of the IMF By effect are presented and partly explained by the magnetospheric electric fields generated due to the solar wind and also by the position of open-closed boundary for different IMF orientation.

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3