Advanced calibration of magnetometers on spin-stabilized spacecraft based on parameter decoupling
-
Published:2019-02-12
Issue:1
Volume:8
Page:63-76
-
ISSN:2193-0864
-
Container-title:Geoscientific Instrumentation, Methods and Data Systems
-
language:en
-
Short-container-title:Geosci. Instrum. Method. Data Syst.
Author:
Plaschke FerdinandORCID, Auster Hans-Ulrich, Fischer DavidORCID, Fornaçon Karl-Heinz, Magnes WernerORCID, Richter Ingo, Constantinescu Dragos, Narita Yasuhito
Abstract
Abstract. Magnetometers are key instruments on board spacecraft that probe
the plasma environments of planets and other solar system bodies. The linear
conversion of raw magnetometer outputs to fully calibrated magnetic field
measurements requires the accurate knowledge of 12 calibration parameters:
six angles, three gain factors, and three offset values. The in-flight determination of
8 of those 12 parameters is enormously supported if the spacecraft is spin-stabilized, as an incorrect choice of those parameters will lead to
systematic spin harmonic disturbances in the calibrated data. We show that
published equations and algorithms for the determination of the
eight spin-related parameters are far from optimal, as they do not take into
account the physical behavior of science-grade magnetometers and the
influence of a varying spacecraft attitude on the in-flight calibration
process. Here, we address these issues. Based on decade-long developments
and experience in calibration activities at the Braunschweig University of
Technology, we introduce advanced calibration equations, parameters, and
algorithms. With their help, it is possible to decouple different effects on
the calibration parameters, originating from the spacecraft or the
magnetometer itself. A key point of the algorithms is the bulk determination
of parameters and associated uncertainties. The lowest uncertainties are expected
under parameter-specific conditions. By application to THEMIS-C (Time History of
Events and Macroscale Interactions during Substorms) magnetometer
measurements, we show where these conditions are fulfilled along a highly
elliptical orbit around Earth.
Publisher
Copernicus GmbH
Subject
Atmospheric Science,Geology,Oceanography
Reference26 articles.
1. Angelopoulos, V.: The THEMIS Mission, Space Sci. Rev., 141, 5–34, https://doi.org/10.1007/s11214-008-9336-1, 2008. a, b 2. Auster, H. U., Glassmeier, K. H., Magnes, W., Aydogar, O., Baumjohann, W.,
Constantinescu, D., Fischer, D., Fornaçon, K. H., Georgescu, E., Harvey, P.,
Hillenmaier, O., Kroth, R., Ludlam, M., Narita, Y., Nakamura, R., Okrafka, K.,
Plaschke, F., Richter, I., Schwarzl, H., Stoll, B., Valavanoglou, A., and
Wiedemann, M.: The THEMIS Fluxgate Magnetometer, Space Sci. Rev., 141, 235–264,
https://doi.org/10.1007/s11214-008-9365-9, 2008. a, b, c, d, e, f, g 3. Balogh, A., Cargill, P. J., Carr, C. M., Dunlop, M. W., Horbury, T. S., Lucek,
E. A., and Cluster FGM Investigator Team: Magnetic Field Observations on Cluster:
an Overview of the First Results, in: Sheffield Space Plasma Meeting: Multipoint
Measurements versus Theory, vol. 492 of ESA Special Publication, edited by:
Warmbein, B., European Space Agency, Noordwijk, the Netherlands, p. 11, 2001a. a 4. Balogh, A., Carr, C. M., Acuña, M. H., Dunlop, M. W., Beek, T. J., Brown,
P., Fornaçon, K.-H., Georgescu, E., Glassmeier, K.-H., Harris, J., Musmann,
G., Oddy, T., and Schwingenschuh, K.: The Cluster Magnetic Field Investigation:
overview of in-flight performance and initial results, Ann. Geophys., 19,
1207–1217, https://doi.org/10.5194/angeo-19-1207-2001, 2001b. a, b 5. Belcher, J. W.: A variation of the Davis–Smith method for in-flight
determination of spacecraft magnetic fields, J. Geophys. Res., 78, 6480–6490,
https://doi.org/10.1029/JA078i028p06480, 1973. a
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|