Arctic sea ice thickness loss determined using subsurface, aircraft, and satellite observations
-
Published:2015-02-10
Issue:1
Volume:9
Page:269-283
-
ISSN:1994-0424
-
Container-title:The Cryosphere
-
language:en
-
Short-container-title:The Cryosphere
Author:
Lindsay R.,Schweiger A.
Abstract
Abstract. Sea ice thickness is a fundamental climate state variable that provides an integrated measure of changes in the high-latitude energy balance. However, observations of mean ice thickness have been sparse in time and space, making the construction of observation-based time series difficult. Moreover, different groups use a variety of methods and processing procedures to measure ice thickness, and each observational source likely has different and poorly characterized measurement and sampling errors. Observational sources used in this study include upward-looking sonars mounted on submarines or moorings, electromagnetic sensors on helicopters or aircraft, and lidar or radar altimeters on airplanes or satellites. Here we use a curve-fitting approach to determine the large-scale spatial and temporal variability of the ice thickness as well as the mean differences between the observation systems, using over 3000 estimates of the ice thickness. The thickness estimates are measured over spatial scales of approximately 50 km or time scales of 1 month, and the primary time period analyzed is 2000–2012 when the modern mix of observations is available. Good agreement is found between five of the systems, within 0.15 m, while systematic differences of up to 0.5 m are found for three others compared to the five. The trend in annual mean ice thickness over the Arctic Basin is −0.58 ± 0.07 m decade−1 over the period 2000–2012. Applying our method to the period 1975–2012 for the central Arctic Basin where we have sufficient data (the SCICEX box), we find that the annual mean ice thickness has decreased from 3.59 m in 1975 to 1.25 m in 2012, a 65% reduction. This is nearly double the 36% decline reported by an earlier study. These results provide additional direct observational evidence of substantial sea ice losses found in model analyses.
Funder
National Aeronautics and Space Administration Office of Polar Programs
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Water Science and Technology
Reference38 articles.
1. Haas, C. and Jochmann, P.: Continuous EM and ULS thickness profiling in support of ice force measurements, in: Proceedings of the 17th International Conference on Port and Ocean Engineering under Arctic conditions (POAC'03), 16–19 June 2003, Trondheim, Norway, edited by: Loeset, S., Bonnemaire, B., and Bjerkas, M., Norwegian University of Science and Technology, Trondheim, 849–856, 2003. 2. Haas, C., Lobach, J., Hendricks, S., Rabenstein, L., and Pfaffling, A.: Helicopter-borne measurements of sea ice thickness, using a small and lightweight, digital EM system, J. Appl. Geophys., 67, 234–241, 2009. 3. Haas, C., Hendricks, S., Eicken, H., and Herber, A.: Synoptic airborne thickness surveys reveal state of Arctic sea ice cover, Geophys. Res. Lett., 37, L09501, https://doi.org/10.1029/2010GL042652, 2010. 4. Hansen, E., Gerland, S., Granskog, M. A., Pavlova, O., Renner, A. H. H., Haapala, J., Lyning, T. B., and Tschudi, M.: Thinning of Arctic sea ice observed in Fram Strait: 1990–2011, J. Geophys. Res.-Oceans, 118, 5202–5221, https://doi.org/10.1002/jgrc.20393, 2013. 5. Krishfield, R. A. and Proshutinsky, A.: BGOS ULS Data Processing Procedure. Woods Hole Oceanographic Institute report, available at: http://www.whoi.edu/fileserver.do?id=85684&pt=2&p=100409 (last access: 26 April 2013), 2006.
Cited by
336 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|