Subglacial lake activity beneath the ablation zone of the Greenland Ice Sheet

Author:

Fan Yubin,Ke Chang-Qing,Shen Xiaoyi,Xiao Yao,Livingstone Stephen J.ORCID,Sole Andrew J.ORCID

Abstract

Abstract. Hydrologically active subglacial lakes can drain large volumes of water and sediment along subglacial pathways, affecting the motion and mass balance of ice masses and impacting downstream sediment dynamics. To date, only eight active lakes have been reported beneath the Greenland Ice Sheet (GrIS), and thus the understanding of their spatial distribution and dynamic processes is still lacking. Here, using ICESat-2 (Ice, Cloud, and land Elevation Satellite-2) ATL11 data, we identify 18 active subglacial lakes, 16 of which have not been previously reported. Multi-temporal ArcticDEM (digital elevation model of the Arctic) strip maps were used to extend the time series to verify lakes and determine their drainage history. The identification of active subglacial lakes beneath the GrIS is complicated by the occurrence of supraglacial lakes, which also fill and drain and are hypothesized to be almost co-located. We therefore used the temporal pattern of ice-surface elevation change to discriminate subglacial lakes and utilized the ability of ICESat-2 to penetrate through surface water to correct the elevation provided by the ATL11 data. A significant localized elevation anomaly (−16.03–10.30 m yr−1) was measured in all detected subglacial lakes after correction, revealing that six subglacial lakes are twinned with supraglacial lakes. The active subglacial lakes have large upstream hydrological catchments and are located near or below the equilibrium line. Lakes have a median area of 1.20 km2, and 12 lakes exhibited positive elevation-change rates during the ICESat-2 period. These observations illustrate the potential for combining ICESat-2 and the ArcticDEM to differentiate small subglacial lakes in the ablation zone and beneath supraglacial lakes.

Funder

National Natural Science Foundation of China

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Water Science and Technology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3