Spectral representation of the annual cycle in the climate change signal

Author:

Bosshard T.,Kotlarski S.,Ewen T.,Schär C.

Abstract

Abstract. The annual cycle of temperature and precipitation changes as projected by climate models is of fundamental interest in climate impact studies. Its estimation, however, is impaired by natural variability. Using a simple form of the delta change method, we show that on regional scales relevant for hydrological impact models, the projected changes in the annual cycle are prone to sampling artefacts. For precipitation at station locations, these artefacts may have amplitudes that are comparable to the climate change signal itself. Therefore, the annual cycle of the climate change signal should be filtered when generating climate change scenarios. We test a spectral smoothing method to remove the artificial fluctuations. Comparison against moving monthly averages shows that sampling artefacts in the climate change signal can successfully be removed by spectral smoothing. The method is tested at Swiss climate stations and applied to regional climate model output of the ENSEMBLES project. The spectral method performs well, except in cases with a strong annual cycle and large relative precipitation changes.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3