Spatio-temporal dynamics of sediment transfer systems in landslide-prone Alpine catchments

Author:

Clapuyt FrançoisORCID,Vanacker VeerleORCID,Christl MarcusORCID,Van Oost Kristof,Schlunegger FritzORCID

Abstract

Abstract. Tectonic and geomorphic processes drive landscape evolution over different spatial and temporal scales. In mountainous environments, river incision sets the pace of landscape evolution, and hillslopes respond to channel incision by, e.g., gully retreat, bank erosion, and landslides. Sediment produced during stochastic landslide events leads to mobilization of soil and regolith on the slopes that can later be transported by gravity and water to the river network during phases of hillslope–channel geomorphic coupling. The mechanisms and scales of sediment connectivity mitigate the propagation of sediment pulses throughout the landscape and eventually drive the contribution of landslides to the overall sediment budget of mountainous catchments. However, to constrain the timing of the sediment cascade, the inherent stochastic nature of sediment and transport through landsliding requires an integrated approach accounting for different space scales and timescales. In this paper, we examine the sediment production on hillslopes and evacuation to the river network of one landslide, i.e. the Schimbrig earthflow, affecting the Entle River catchment located in the foothills of the Central Swiss Alps. We quantified sediment fluxes over annual, decadal, and millennial timescales using respectively unmanned aerial vehicle (UAV)–structure-from-motion (SfM) techniques, classic photogrammetry, and in situ produced cosmogenic radionuclides. At the decadal scale, sediment fluxes quantified for the period 1962–1998 are highly variable and are not directly linked to the intensity of sediment redistribution on the hillslope. At the millennial scale, landslide occurrence perturbs the regional positive linear relationship between sediment fluxes and downstream distance as the landslide-affected Schimbrig catchment is characterized by a decrease in sediment fluxes and a strong variability. Importantly, the average decadal sediment flux of the Schimbrig catchment is 2 orders of magnitude higher than millennial sediment fluxes computed over the same spatial extent. The discrepancy between decadal and millennial sediment fluxes, combined to the highly variable annual sediment evacuation from the hillslopes to the channel network suggest that phases of hillslope–channel geomorphic coupling are short and intermittent. During most of the time, the first-order catchments are transport-limited and sediment dynamics in the headwaters are uncoupled from the fluvial systems. In addition, our unique spatio-temporal database of sediment fluxes highlights the transient character of the intense geomorphic activity of the Schimbrig catchment in a regional context. Its decadal sediment flux is of the same order of magnitude as the background sediment flux going out of the entire Entle River catchment. Over the last 50 years, the Schimbrig catchment, which represents ca. 1 % of the entire study area, provides 65 % of the sediments that the entire Entle catchment will supply over the millennial scale. These results suggest that episodic supply of sediment from landslides during intermittent phases of hillslope–channel geomorphic coupling are averaged out when considering sediment fluxes at longer timescales and larger spatial scales.

Publisher

Copernicus GmbH

Subject

Paleontology,Stratigraphy,Earth-Surface Processes,Geochemistry and Petrology,Geology,Geophysics,Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3