Dynamics of gap winds in the Great Rift Valley, Ethiopia: emphasis on strong winds at Lake Abaya

Author:

Weiß Cornelius Immanuel,Gohm AlexanderORCID,Rotach Mathias WalterORCID,Minda Thomas TororaORCID

Abstract

Abstract. Lake Abaya, located in the Great Rift Valley (GRV) in Ethiopia, is affected by regularly occurring strong winds that cause water waves, which in turn affect the lake's ecology and food web. The driving forces for these winds, however, are yet unexplained. Hence, the main goal of this study is to provide a physical explanation for the formation of these strong winds in the GRV and especially at Lake Abaya. To this aim, two case studies were performed based on measurements, ERA5 reanalysis data and mesoscale numerical simulations conducted with the Weather Research and Forecasting (WRF) model. The simulations revealed that in both cases a gap flow downstream of the narrowest and highest part of the GRV (i.e. the pass) led to high wind speeds of up to 25 m s−1. Two types of gap flow were identified: a north-eastern gap flow and a south-western gap flow. The wind directions are in line with the orientation of the valley axis and depend on the air mass distribution north and south of the valley and the resulting along-valley pressure gradient. The air mass distribution was determined by the position of the Intertropical Convergence Zone relative to the GRV. The colder air mass was upstream of the GRV in both case studies. During the day, the convective boundary layer in the warmer air mass on the downstream side heated up more strongly and quickly than in the colder air mass. The most suitable variable describing the timing of the gap flow was found to be the pressure gradient at pass height, which corresponds roughly to the 800 hPa pressure level. In both cases the gap flow exhibited a strong daily cycle, which illustrates the importance of the thermal forcing due to differential heating over complex terrain in addition to the large-scale forcing due to air mass differences. The start, strength, and the duration of the gap winds within the valley depended on location. For both cases, the strongest winds occurred after sunset and in the ongoing night downstream of the gap and on the corresponding lee slope. The ERA5 reanalysis captures both events qualitatively well but with weaker wind speeds than in the mesoscale numerical simulations. Hence, ERA5 is suitable for a future climatological analysis of these gap flows.

Publisher

Copernicus GmbH

Subject

General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3