Carbon isotope excursions in paleosol carbonate marking five early Eocene hyperthermals in the Bighorn Basin, Wyoming

Author:

Abels H. A.,Lauretano V.,van Yperen A.,Hopman T.,Zachos J. C.,Lourens L. J.,Gingerich P. D.ORCID,Bowen G. J.ORCID

Abstract

Abstract. Transient greenhouse warming events in the Paleocene and Eocene were associated with the addition of isotopically-light carbon to the exogenic atmosphere–ocean carbon pool, leading to substantial environmental and biotic change. The magnitude of an accompanying carbon isotope excursion (CIE) can be used to constrain both the sources and amounts of carbon released during an event, as well as to correlate marine and terrestrial records with high precision. The Paleocene Eocene Thermal Maximum (PETM) is well documented, but CIE records for the subsequent warming events are still rare especially from the terrestrial realm. Here, we provide new CIE records for two of the smaller hyperthermal events, I1 and I2, in paleosol carbonate, as well as two additional records of ETM2 and H2 in the Bighorn Basin. Stratigraphic comparison of this expanded, high-resolution terrestrial carbon isotope record to the deep-sea benthic foraminifera records from ODP Sites 1262 and 1263, Walvis Ridge, in the southern Atlantic Ocean corroborates that the Bighorn Basin fluvial sediments record global atmospheric change. The stratigraphic thicknesses of the eccentricity-driven hyperthermals in these archives are in line with precession-forcing of the 7 m thick fluvial overbank-avulsion sedimentary cycles. Using the CALMAG bulk oxide mean annual precipitation proxy, we reconstruct similar or slightly wetter than background soil moisture contents during the four younger hyperthermals, in contrast to drying observed during the PETM. Soil carbonate CIEs vary in magnitude proportionally with the marine CIEs for the four smaller early Eocene hyperthermals. This relationship breaks down for the PETM, with the soil carbonate CIE ~ 2–4‰ less than expected if all five linearly relate to marine CIEs. If the PETM CO2 forcing was similar but scaled to the younger hyperthermals, photosynthetic isotope fractionation or soil environmental factors are needed to explain this anomaly. We use sensitivity testing of experimentally determined photosynthetic isotope discrimination relationships to show that factors other than the recently demonstrated pCO2 sensitivity of C3 plants carbon isotope fractionation are required to explain this anomaly.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3