A two-channel, tunable diode laser-based hygrometer for measurement of water vapor and cirrus cloud ice water content in the upper troposphere and lower stratosphere

Author:

Thornberry T. D.ORCID,Rollins A. W.,Gao R. S.,Watts L. A.,Ciciora S. J.,McLaughlin R. J.,Fahey D. W.ORCID

Abstract

Abstract. The recently developed NOAA Water instrument is a two-channel, closed-path, tunable diode laser absorption spectrometer designed for the measurement of upper troposphere/lower stratosphere water vapor and enhanced total water (vapor + inertially enhanced condensed phase) from the NASA Global Hawk unmanned aircraft system (UAS) or other high-altitude research aircraft. The instrument utilizes wavelength-modulated spectroscopy with second harmonic detection near 2694 nm to achieve high precision with a 79 cm double-pass optical path. The detection cells are operated under constant temperature, pressure, and flow conditions to maintain a constant sensitivity to H2O independent of the ambient sampling environment. An onboard calibration system is used to perform periodic in situ calibrations to verify the stability of the instrument sensitivity during flight. For the water vapor channel, ambient air is sampled perpendicular to the flow past the aircraft in order to reject cloud particles, while the total water channel uses a heated, forward-facing inlet to sample both water vapor and cloud particles. The total water inlet operates subisokinetically, thereby inertially enhancing cloud particle number in the sample flow and affording increased cloud water content sensitivity. The NOAA Water instrument was flown for the first time during the second deployment of the Airborne Tropical TRopopause EXperiment (ATTREX) in February–March 2013 on the NASA Global Hawk UAS. The instrument demonstrated a typical in-flight precision (1 s, 1σ) of better than 0.17 parts per million (ppm, 10−6 mol mol−1), with an overall H2O vapor measurement uncertainty of 5% ± 0.23 ppm. The inertial enhancement for cirrus cloud particle sampling under ATTREX flight conditions ranged from 33 to 48 for ice particles larger than 8 μm in diameter, depending primarily on aircraft altitude. The resulting ice water content detection limit (2σ) was 0.023–0.013 ppm, corresponding to approximately 2 μg m−3, with an estimated overall uncertainty of 20%.

Funder

National Aeronautics and Space Administration

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3