Simultaneous retrieval of aerosol and ocean properties from PACE HARP2 with uncertainty assessment using cascading neural network radiative transfer models

Author:

Gao MengORCID,Franz Bryan A.,Zhai Peng-Wang,Knobelspiesse KirkORCID,Sayer Andrew M.ORCID,Xu Xiaoguang,Martins J. Vanderlei,Cairns Brian,Castellanos Patricia,Fu GuangliangORCID,Hannadige Neranga,Hasekamp OttoORCID,Hu YongxiangORCID,Ibrahim AmirORCID,Patt Frederick,Puthukkudy AninORCID,Werdell P. Jeremy

Abstract

Abstract. The University of Maryland, Baltimore County (UMBC) Hyper-Angular Rainbow Polarimeter (HARP2) will be on board NASA's Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission, scheduled for launch in January 2024. In this study we systematically evaluate the retrievability and uncertainty of aerosol and ocean parameters from HARP2 multi-angle polarimeter (MAP) measurements. To reduce the computational demand of MAP-based retrievals and maximize data processing throughput, we developed improved neural network (NN) forward models for spaceborne HARP2 measurements over a coupled atmosphere and ocean system within the FastMAPOL retrieval algorithm. To this end, a cascading retrieval scheme is implemented in FastMAPOL, which leverages a series of NN models of varying size, speed, and accuracy to optimize performance. Two sets of NN models are used for reflectance and polarization, respectively. A full day of global synthetic HARP2 data was generated and used to test various retrieval parameters including aerosol microphysical and optical properties, aerosol layer height, ocean surface wind speed, and ocean chlorophyll a concentration. To assess retrieval quality, pixel-wise retrieval uncertainties were derived from error propagation and evaluated against the difference between the retrieval parameters and truth based on a Monte Carlo method. We found that the fine-mode aerosol properties can be retrieved well from the HARP2 data, though the coarse-mode aerosol properties are more uncertain. Larger uncertainties are associated with a reduced number of available viewing angles, which typically occur near the scan edge of the HARP2 instrument. Results of the performance assessment demonstrate that the algorithm is a viable approach for operational application to HARP2 data after the PACE launch.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3