Theoretical assessment of the ability of the MicroCarb satellite city-scan observing mode to estimate urban CO2 emissions

Author:

Wu Kai,Palmer Paul I.ORCID,Wu DienORCID,Jouglet Denis,Feng Liang,Oda TomORCID

Abstract

Abstract. We assess the theoretical capability of the upcoming France–UK MicroCarb satellite, which has a city-scan observing mode, to determine integrated urban emissions of carbon dioxide (CO2). To achieve this we report results from a series of closed-loop numerical experiments that use an atmospheric transport model with anthropogenic and biogenic fluxes to determine the corresponding changes in atmospheric CO2 column, accounting for changes in measurement coverage due to cloud loading. We use a maximum a posteriori inverse method to infer the CO2 fluxes based on the measurements and the a priori information. Using an urban CO2 inversion system, we explore the relative performance of alternative two-sweep and three-sweep city observing strategies to quantify CO2 emissions over the cities of Paris and London in different months when biospheric fluxes vary in magnitude. We find that both the two-sweep and three-sweep observing modes are able to reduce a priori flux errors by 20 %–40 % over Paris and London. The three-sweep observing strategy, which generally outperforms the two-sweep mode by virtue of its wider scan area that typically yields more cloud-free observations, can retrieve the total emissions of the truth within 7 % over Paris and 21 % over London. The performance of the limited-domain city-mode observing strategies is sensitive to cloud coverage and particularly sensitive to the prevailing wind direction. We also find that seasonal photosynthetic uptake of CO2 by the urban biosphere weakens atmospheric CO2 gradients across both cities, thereby reducing the sensitivity of urban CO2 enhancements and subsequently compromising the ability of MicroCarb to reduce bias in estimating urban CO2 emissions. This suggests that additional trace gases co-emitted with anthropogenic CO2 emissions, but unaffected by the land biosphere, are needed to quantify sub-city scale CO2 emissions during months when the urban biosphere is particularly active.

Funder

UK Space Agency

National Centre for Earth Observation

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference90 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3