Performance assessment of state-of-the-art and novel methods for remote compliance monitoring of sulfur emissions from shipping

Author:

Beecken Jörg,Weigelt Andreas,Griesel Simone,Mellqvist JohanORCID,Conde Jacobo Alexander V.,van Dinther Daniëlle,Duyzer Jan,Knudsen Jon,Knudsen Bettina,Ntziachristos LeonidasORCID

Abstract

Abstract. The fuel sulfur content (FSC) of ocean-going and inland vessels was measured simultaneously by eight different state-of-the-art and novel monitoring systems during a 6-week campaign at the Elbe River, at a distance of about 10 km to the port of Hamburg, Germany. Both stationary and airborne systems on unoccupied aerial vehicles (UAVs) were operated by four participating partners in a side-by-side measurement setup to measure the emission factors of the same emission sources. A novel laser spectrometer, with significantly better-precision specifications as compared with the other instruments, was used for the first time for emission monitoring regarding the International Convention for the Prevention of Pollution from Ships (MARPOL) Annex VI regulations. The comparison took place in the North Sea sulfur emission control area (SECA), where the allowed FSC is limited to 0.10 %Sm/m. The unit %Sm/m relates to the percentage of mass sulfur per mass combusted fuel. In total, 966 plumes that originated from 436 different vessels were analysed in this study. At the same time, fuel samples obtained from 34 different vessels and bunker delivery notes (BDNs) from five frequently monitored vessels were used as a reference to assess the uncertainties of the different systems. Seven of the eight measurement systems tended to underestimate the FSC found from fuel samples and BDNs. A possible relation between underestimation and high relative humidities (above 80 %) was observed. The lowest systematic deviations were observed for the airborne systems and the novel laser spectrometer. The two UAV-borne systems showed total uncertainties of 0.07 %Sm/m and 0.09 %Sm/m (confidence level: 95 %). The novel laser spectrometer showed the lowest total uncertainty of 0.05 %Sm/m compared with other stationary sniffer systems, whose total uncertainties range from 0.08 %Sm/m to 0.09 %Sm/m. It was concluded that non-compliant vessels, with an actual FSC of the combusted fuel above 0.15 %Sm/m to 0.19 %Sm/m, can be detected by the compared systems with 95 % confidence.

Funder

Horizon 2020

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference30 articles.

1. Alföldy, B., Lööv, J. B., Lagler, F., Mellqvist, J., Berg, N., Beecken, J., Weststrate, H., Duyzer, J., Bencs, L., Horemans, B., Cavalli, F., Putaud, J.-P., Janssens-Maenhout, G., Csordás, A. P., Van Grieken, R., Borowiak, A., and Hjorth, J.: Measurements of air pollution emission factors for marine transportation in SECA, Atmos. Meas. Tech., 6, 1777–1791, https://doi.org/10.5194/amt-6-1777-2013, 2013.

2. Balzani Lööv, J. M., Alfoldy, B., Gast, L. F. L., Hjorth, J., Lagler, F., Mellqvist, J., Beecken, J., Berg, N., Duyzer, J., Westrate, H., Swart, D. P. J., Berkhout, A. J. C., Jalkanen, J.-P., Prata, A. J., van der Hoff, G. R., and Borowiak, A.: Field test of available methods to measure remotely SOx and NOx emissions from ships, Atmos. Meas. Tech., 7, 2597–2613, https://doi.org/10.5194/amt-7-2597-2014, 2014.

3. Beecken, J., Mellqvist, J., Salo, K., Ekholm, J., and Jalkanen, J.-P.: Airborne emission measurements of SO2 , NOx and particles from individual ships using a sniffer technique, Atmos. Meas. Tech., 7, 1957–1968, https://doi.org/10.5194/amt-7-1957-2014, 2014.

4. Beecken, J., Mellqvist, J., Salo, K., Ekholm, J., Jalkanen, J.-P., Johansson, L., Litvinenko, V., Volodin, K., and Frank-Kamenetsky, D. A.: Emission factors of SO2, NOx and particles from ships in Neva Bay from ground-based and helicopter-borne measurements and AIS-based modeling, Atmos. Chem. Phys., 15, 5229–5241, https://doi.org/10.5194/acp-15-5229-2015, 2015.

5. Beecken, J., Irjala, M., Weigelt, A., Conde, V., Mellqvist, J., Proud, R., Deakin, A., Knudsen, B., Timonen, H., Sundström, A.-M., Louie, P., Smyth, T., and Duyzer, J.: Review of available remote systems for ship emission measurements, The SCIPPER Project (European Commission – Horizon 2020 No. 814893), https://www.scipper-project.eu/wp-content/uploads/2020/01/scipper_d2_1_20191220.pdf (last access: 29 September 2023), 2019.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3