Methane point source quantification using MethaneAIR: a new airborne imaging spectrometer

Author:

Chulakadabba ApisadaORCID,Sargent Maryann,Lauvaux ThomasORCID,Benmergui Joshua S.,Franklin Jonathan E.,Chan Miller Christopher,Wilzewski Jonas S.ORCID,Roche Sébastien,Conway Eamon,Souri Amir H.,Sun KangORCID,Luo Bingkun,Hawthrone Jacob,Samra Jenna,Daube Bruce C.,Liu Xiong,Chance KellyORCID,Li YangORCID,Gautam Ritesh,Omara MarkORCID,Rutherford Jeff S.,Sherwin Evan D.ORCID,Brandt Adam,Wofsy Steven C.

Abstract

Abstract. The MethaneSAT satellite instrument and its aircraft precursor, MethaneAIR, are imaging spectrometers designed to measure methane concentrations with wide spatial coverage, fine spatial resolution, and high precision compared to currently deployed remote sensing instruments. At 12 960 m cruise altitude above ground (13 850 m above sea level), MethaneAIR datasets have a 4.5 km swath gridded to 10 m × 10 m pixels with 17–20 ppb standard deviation on a flat scene. MethaneAIR was deployed in the summer of 2021 in the Permian Basin to test the accuracy of the retrieved methane concentrations and emission rates using the algorithms developed for MethaneSAT. We report here point source emissions obtained during a single-blind volume-controlled release experiment, using two methods. (1) The modified integrated mass enhancement (mIME) method estimates emission rates using the total mass enhancement of methane in an observed plume combined with winds obtained from Weather Research Forecast driven by High-Resolution Rapid Refresh meteorological data in Large Eddy Simulations mode (WRF-LES-HRRR). WRF-LES-HRRR simulates winds in stochastic eddy-scale (100–1000 m) variability, which is particularly important for low-wind conditions and informing the error budget. The mIME can estimate emission rates of plumes of any size that are detectable by MethaneAIR. (2) The divergence integral (DI) method applies Gauss's theorem to estimate the flux divergence fields through a series of closed surfaces enclosing the sources. The set of boxes grows from the upwind side of the plume through the core of each plume and downwind. No selection of inflow concentration, as used in the mIME, is required. The DI approach can efficiently determine fluxes from large sources and clusters of sources but cannot resolve small point emissions. These methods account for the effects of eddy-scale variation in different ways: the DI averages across many eddies, whereas the mIME re-samples many eddies from the LES simulation. The DI directly uses HRRR winds, while mIME uses WRF-LES-HRRR wind products. Emissions estimates from both the mIME and DI methods agreed closely with the single-blind volume-controlled experiments (N = 21). The York regression between the estimated emissions and the released emissions has a slope of 0.96 [0.84, 1.08], R = 0.83 and N = 21, with 30 % mean percentage error for the whole dataset, which indicates that MethaneAIR can quantify point sources emitting more than 200 kg h−1 for the mIME and 500 kg h−1 for the DI method. The two methods also agreed on methane emission estimates from various uncontrolled sources in the Permian Basin. The experiment thus demonstrates the powerful potential of the MethaneAIR instrument and suggests that the quantification method should be transferable to MethaneSAT if it meets the design specifications.

Funder

Division of Earth Sciences

Environmental Defense Fund

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3