Phytoplanktonic response to contrasted Saharan dust deposition events during mesocosm experiments in LNLC environment

Author:

Ridame C.,Dekaezemacker J.,Guieu C.ORCID,Bonnet S.,L'Helguen S.,Malien F.

Abstract

Abstract. The response of the phytoplanktonic community (primary production and algal biomass) to contrasted Saharan dust events (wet and dry deposition) was studied in the framework of the DUNE "a DUst experiment in a low-Nutrient, low-chlorophyll Ecosystem" project. We simulated realistic dust deposition events (10 g m−2) into large mesocosms (52 m3). Three distinct experimental dust additions were conducted in June 2008 (DUNE-1-P: simulation of a wet deposition, DUNE-1-Q: simulation of a dry deposition) and 2010 (DUNE-2-R1, -R2: simulation of 2 successive wet depositions) in the northwestern oligotrophic Mediterranean Sea. No changes in primary production (PP) and chlorophyll a concentration (Chl a) were observed after a dry deposition event while a wet deposition event resulted in a rapid (24 h after dust additions), strong (up 2.4 fold) and long (at least a week duration) increase in PP and Chl a. We show that in addition to being a source of dissolved inorganic phosphorus (DIP), simulated wet deposition events were also a significant source of NO3− (net increases up to +9.8 μM NO3− at 0.1 m depth) to the nutrient depleted surface waters due to cloud processes and mixing with anthropogenic species such as HNO3. The dry deposition event was shown to be a negligible source of NO3−. By transiently increasing DIP and NO3− concentrations in P-N starved surface waters, wet deposition of Saharan dust was able to relieve the potential N or NP co-limitation of the phytoplanktonic activity. Due to the higher input of NO3− relative to DIP, a wet deposition event resulted in a strong increase in the NO3−/DIP ratio from initially < 6 to over 150 at the end of the DUNE-2-R1 experiment suggesting a switch from an initial N or NP co-limitation towards a severe P limitation. We also show that the contribution of new production to PP increased after wet dust deposition events from initially 15% to 60–70% 24 h after seeding, indicating a switch from a regenerated-production based system to a new-production based system. DUNE experiments show that wet and dry dust deposition events induce contrasted responses of the phytoplanktonic community due to differences in the atmospheric supply of bioavailable new nutrients. Our results from original mesocosm experiments demonstrate that atmospheric dust wet deposition greatly influences primary productivity and algal biomass in LNLC environments, changes nutrient stocks and alters the NO3−/DIP ratio leading to a switch in the nutrient limitation of the phytoplanktonic activity.

Publisher

Copernicus GmbH

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3