Mechanisms of microbial carbon sequestration in the ocean – future research directions
Author:
Jiao N., Robinson C.ORCID, Azam F., Thomas H.ORCID, Baltar F.ORCID, Dang H., Hardman-Mountford N. J., Johnson M.ORCID, Kirchman D. L., Koch B. P.ORCID, Legendre L.ORCID, Li C., Liu J., Luo T., Luo Y.-W., Mitra A., Romanou A., Tang K., Wang X., Zhang C., Zhang R.
Abstract
Abstract. This paper reviews progress on understanding biological carbon sequestration in the ocean with special reference to the microbial formation and transformation of recalcitrant dissolved organic carbon (RDOC), the microbial carbon pump (MCP). We propose that RDOC is a relative concept with a wide continuum of recalcitrance. Most RDOC compounds maintain their levels of recalcitrance only in a specific environmental context (RDOCt). The ocean RDOC pool also contains compounds that may be inaccessible to microbes due to their extremely low concentration (RDOCc). This differentiation allows us to appreciate the linkage between microbial source and RDOC composition on a range of temporal and spatial scales. Analyses of biomarkers and isotopic records show intensive MCP processes in the anoxic Proterozoic oceans when the MCP could have played a significant role in regulating climate. Understanding the dynamics of the MCP in conjunction with the better constrained biological pump (BP) over geological timescales could help to predict future climate trends. Integration of the MCP and the BP will require new research approaches and opportunities. Major goals include understanding the interactions between particulate organic carbon (POC) and RDOC that contribute to sequestration efficiency, and the concurrent determination of the chemical composition of organic carbon, microbial community composition and enzymatic activity. Molecular biomarkers and isotopic tracers should be employed to link water column processes to sediment records, as well as to link present-day observations to paleo-evolution. Ecosystem models need to be developed based on empirical relationships derived from bioassay experiments and field investigations in order to predict the dynamics of carbon cycling along the stability continuum of POC and RDOC under potential global change scenarios. We propose that inorganic nutrient input to coastal waters may reduce the capacity for carbon sequestration as RDOC. The nutrient regime enabling maximum carbon storage from combined POC flux and RDOC formation should therefore be sought.
Publisher
Copernicus GmbH
Reference216 articles.
1. Allgaier, M., Riebesell, U., Vogt, M., Thyrhaug, R., and Grossart, H.-P.: Coupling of heterotrophic bacteria to phytoplankton bloom development at different pCO2 levels: a mesocosm study, Biogeosciences, 5, 1007–1022, https://doi.org/10.5194/bg-5-1007-2008, 2008. 2. Alonso-González, I. J., Arístegui, J., Lee, C., and Calafat, A.: Regional and temporal variability of sinking organic matter in the subtropical northeast Atlantic Ocean: a biomarker diagnosis, Biogeosciences, 7, 2101–2115, https://doi.org/10.5194/bg-7-2101-2010, 2010. 3. Anderson, T. R. and Tang, K. W.: Carbon cycling and POC turnover in the mesopelagic zone of the ocean: insights from a simple model, Deep-Sea Res. Pt. II., 57, 1581–1592, 2010. 4. Arístegui, J. and Montero, M. F.: Temporal and spatial changes in plankton respiration and biomass in the Canary Islands region: the effect of mesoscale variability, J. Marine Syst., 54, 65–82, 2005. 5. Arístegui, J., Tett, P., Hernández-Guerra, A., Basterretxea, G., Montero, M. F., Wild, K., Sangrá, P., Hernández-León, S., Cantón, M., García-Braun, J. A., Pacheco, M., and Barton, E. D.: The influence of island-generated eddies on chlorophyll distribution: a study of mesoscale variation around Gran Canaria, Deep-Sea Res., 44, 71–96, 1997.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|