Efficient photochemical generation of peroxycarboxylic nitric anhydrides with ultraviolet light-emitting diodes
-
Published:2015-07-08
Issue:7
Volume:8
Page:2737-2748
-
ISSN:1867-8548
-
Container-title:Atmospheric Measurement Techniques
-
language:en
-
Short-container-title:Atmos. Meas. Tech.
Author:
Rider N. D., Taha Y. M.ORCID, Odame-Ankrah C. A., Huo J. A., Tokarek T. W., Cairns E., Moussa S. G., Liggio J., Osthoff H. D.ORCID
Abstract
Abstract. Photochemical sources of peroxycarboxylic nitric anhydrides (PANs) are utilized in many atmospheric measurement techniques for calibration or to deliver an internal standard. Conventionally, such sources rely on phosphor-coated low-pressure mercury (Hg) lamps to generate the UV light necessary to photo-dissociate a dialkyl ketone (usually acetone) in the presence of a calibrated amount of nitric oxide (NO) and oxygen (O2). In this manuscript, a photochemical PAN source in which the Hg lamp has been replaced by arrays of ultraviolet light-emitting diodes (UV-LEDs) is described. The output of the UV-LED source was analyzed by gas chromatography (PAN-GC) and thermal dissociation cavity ring-down spectroscopy (TD-CRDS). Using acetone, diethyl ketone (DIEK), diisopropyl ketone (DIPK), or di-n-propyl ketone (DNPK), respectively, the source produces peroxyacetic (PAN), peroxypropionic (PPN), peroxyisobutanoic (PiBN), or peroxy-n-butanoic nitric anhydride (PnBN) from NO in high yield (> 90 %). Box model simulations with a subset of the Master Chemical Mechanism (MCM) were carried out to rationalize product yields and to identify side products. The present work demonstrates that UV-LED arrays are a viable alternative to current Hg lamp setups.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference39 articles.
1. Blitz, M. A., Heard, D. E., and Pilling, M. J.: OH formation from CH3CO + O2: a convenient experimental marker for the acetyl radical, Chem. Phys. Lett., 365, 374–379, https://doi.org/10.1016/S0009-2614(02)01484-7 , 2002. 2. Darley, E. F., Kettner, K. A., and Stephens, E. R.: Analysis of Peroxyacyl Nitrates by Gas Chromatography with Electron Capture Detection, Anal. Chem., 35, 589–591, https://doi.org/10.1021/ac60197a028, 1963. 3. Day, D. A., Wooldridge, P. J., Dillon, M. B., Thornton, J. A., and Cohen, R. C.: A thermal dissociation laser-induced fluorescence instrument for in situ detection of NO2, peroxy nitrates, alkyl nitrates, and HNO3, J. Geophys. Res., 107, 4046, https://doi.org/10.1029/2001JD000779, 2002. 4. Fischer, E. V., Jaffe, D. A., Reidmiller, D. R., and Jaegle, L.: Meteorological controls on observed peroxyacetyl nitrate at Mount Bachelor during the spring of 2008, J. Geophys. Res., 115, D03302, https://doi.org/10.1029/2009JD012776, 2010. 5. Flocke, F. M., Weinheimer, A. J., Swanson, A. L., Roberts, J. M., Schmitt, R., and Shertz, S.: On the measurement of PANs by gas chromatography and electron capture detection, J. Atmos. Chem., 52, 19–43, https://doi.org/10.1007/s10874-005-6772-0, 2005.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|