Quantifying methane emissions from rice paddies in Northeast China by integrating remote sensing mapping with a biogeochemical model

Author:

Zhang Y.,Wang Y. Y.,Su S. L.,Li C. S.

Abstract

Abstract. The Sanjiang Plain located in Northeastern China is one of the major rice producing regions in the country. However, differing from the majority rice regions in Southern China, the Sanjinag Plain possesses a much cooler weather. Could the rice paddies in this domain be an important source of global methane? To answer this question, we calculated methane (CH4) emissions from the region by integrating remote sensing mapping with a process-based biogeochemistry model, Denitrification and Decomposition or DNDC. To quantify regional CH4 emissions from the plain, we first tested the model against a two-year dataset of CH4 fluxes measured at a typical rice field within the domian. A sensitivity test was conducted to find out the most sensitive factors affecting CH4 emissions in the region. Based on the understanding gained from the validation and sensitivity tests, a geographic information system (GIS) database was constructed to hold the spatially differentiated input information to drive DNDC for its regional simulations. The GIS database included a rice map derived from the Landsat TM images, which provided crucial information about the spatial distribution of the rice fields within the domain of 10.93 million hectares. The modeled results showed that the total 1.44 million ha of rice paddies in the plain emitted 0.43–0.58 Tg CH4-C per year with spatially differentiated annual emission rates ranging between 100–800 kg CH4-C/ha, which are comparable with that observed in Southern China. The modeled data indicated that the high SOC contents, long crop season and high rice biomass enhanced CH4 production in the cool paddies. The modeled results proved that the northern wetland agroecosystems could make important contributions to global greenhouse gas inventory.

Publisher

Copernicus GmbH

Reference61 articles.

1. Aggarwal, P. K., Kalra, N., Chander, S., and Pathak, H.: InfoCrop: a generic simulation model for annual crops in tropical environments, Indian Agricultural Research Institute, New Delhi, 2004.

2. Anastasi, C., Dowding, M., and Simpson, V. J.: Future CH4 emission from rice production, J. Geophys. Res., 97, 7521–7525, 1992.

3. Babu, Y. J., Li, C. S., Frolking, S., Nayak, D. R., Datta, A., and Adhya, T. K.: Modelling of methane emissions from rice-based production systems in India with the denitrification and decomposition model: field validation and sensitivity analysis, Curr. Sci., 89, 1904–1912, 2005.

4. Babu, Y. J., Li, C. S., Frolking, S., Nayak, D. R., and Adhya, T. K.: Field validation of DNDC model for methane and nitrous oxide emissions from rice-based production systems of India, Nutr. Cycl. Agroecosys., 74, 157–174, 2006.

5. Bachelet, D. and Neue, H. U.: Methane emission from wetland rice areas of Asia, Chemosphere, 26, 219–237, 1993.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3