Lessons from spatial transcriptomics and computational geography in mapping the transcriptome

Author:

Comber AlexisORCID,Zormpas Eleftherios,Queen Rachel,Cockell Simon J.

Abstract

Abstract. Spatial data, data with some form of location attached, are the norm: all data are spatial now. However spatial data requires consideration of three critical characteristics, observation spatial auto-correlated, process spatially non-stationarity and the effect of the MAUP. Geographers are familiar with these and have tools, rubrics and workflows to accommodate them and understand their impacts on statical inference, understanding and prediction. However, increasingly researchers in non geographical domains, with no experience of, or exposure to quantitative geography or GIScience are undertaking analyses of such data without full or any understanding of the impacts of these spatial data properties. This short paper describes recent interactions and work with research in gene analysis and Spatial Transcriptomics, and highlight the opportunities for GIScience to inform and steer the many new users of spatial data.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3