Occupation Prediction with Multimodal Learning from Tweet Messages and Google Street View Images

Author:

Liu Xinyi,Peng Bo,Wu Meiliu,Wang Mingshu,Cai Heng,Huang Qunying

Abstract

Abstract. Despite the development of various heuristic and machine learning models, social media user occupation predication remains challenging due to limited high-quality ground truth data and difficulties in effectively integrating multiple data sources in different modalities, which can be complementary and contribute to informing the profession or job role of an individual. In response, this study introduces a novel semi-supervised multimodal learning method for Twitter user occupation prediction with a limited number of training samples. Specifically, an unsupervised learning model is first designed to extract textual and visual embeddings from individual tweet messages (textual) and Google Street View images (visual), with the latter capturing the geographical and environmental context surrounding individuals’ residential and workplace areas. Next, these high-dimensional multimodal features are fed into a multilayer transfer learning model for individual occupation classification. The proposed occupation prediction method achieves high evaluation scores for identifying Office workers, Students, and Others or Jobless people, with the F1 score for identifying Office workers surpassing the best previously reported scores for occupation classification using social media data.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3