Road Network Mapping from Multispectral Satellite Imagery: Leveraging Deep Learning and Spectral Bands

Author:

Hollendonner Samuel,Alinaghi Negar,Giannopoulos Ioannis

Abstract

Abstract. Updating road networks in rapidly changing urban landscapes is an important but difficult task, often challenged by the complexity and errors of manual mapping processes. Traditional methods that primarily use RGB satellite imagery struggle with obstacles in the environment and varying road structures, leading to limitations in global data processing. This paper presents an innovative approach that utilizes deep learning and multispectral satellite imagery to improve road network extraction and mapping. By exploring U-Net models with DenseNet backbones and integrating different spectral bands we apply semantic segmentation and extensive post-processing techniques to create georeferenced road networks. We trained two identical models to evaluate the impact of using images created from specially selected multispectral bands rather than conventional RGB images. Our experiments demonstrate the positive impact of using multispectral bands, by improving the results of the metrics Intersection over Union (IoU) by 6.5%, F1 by 5.4%, and the newly proposed relative graph edit distance (relGED) and topology metrics by 2.2% and 2.6% respectively. 

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3