ML-based water quality modeling at national level in a data-scarce region

Author:

Virro HolgerORCID,Kmoch AlexanderORCID,Vainu Marko,Uuemaa EvelynORCID

Abstract

Abstract. Water quality (WQ) modeling can be used for gaining insight into WQ issues in order to implement effective mitigation efforts. Process-based nutrient models are very complex, requiring a lot of input parameters and computationally expensive calibration. Recently, ML approaches have shown to achieve an accuracy comparable to the process-based models and even outperform them when describing nonlinear relationships. We used observations from 242 Estonian catchments, amounting to 469 yearly total nitrogen (TN) and 470 total phosphorus (TP) measurements covering the period 2016–2020 to train random forest (RF) models for predicting annual N and P concentrations. We used a total of 82 predictor variables, including land use and land cover (LULC), soil, climate and topography parameters and applied a feature selection strategy to reduce the number of dependent features in the models. The SHAP method was used for deriving the most relevant predictors. The performance of our models is comparable to previous process-based models used in the Baltic region. However, as input data used in our models is easier to obtain, the models offer superior applicability in areas, where data availability is insufficient for process-based approaches.

Publisher

Copernicus GmbH

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3