A review of sea-spray aerosol source functions using a large global set of sea salt aerosol concentration measurements

Author:

Grythe H.ORCID,Ström J.,Krejci R.ORCID,Quinn P.,Stohl A.ORCID

Abstract

Abstract. Sea-spray aerosols (SSA) are an important part of the climate system because of their effects on the global radiative budget – both directly as scatterers and absorbers of solar and terrestrial radiation, and indirectly as cloud condensation nuclei (CCN) influencing cloud formation, lifetime, and precipitation. In terms of their global mass, SSA have the largest uncertainty of all aerosols. In this study we review 21 SSA source functions from the literature, several of which are used in current climate models. In addition, we propose a~new function. Even excluding outliers, the global annual SSA mass produced spans roughly 3–70 Pg yr−1 for the different source functions, for particles with dry diameter Dp < 10 μm, with relatively little interannual variability for a given function. The FLEXPART Lagrangian particle dispersion model was run in backward mode for a large global set of observed SSA concentrations, comprised of several station networks and ship cruise measurement campaigns. FLEXPART backward calculations produce gridded emission sensitivity fields, which can subsequently be multiplied with gridded SSA production fluxes in order to obtain modeled SSA concentrations. This allowed us to efficiently and simultaneously evaluate all 21 source functions against the measurements. Another advantage of this method is that source-region information on wind speed and sea surface temperatures (SSTs) could be stored and used for improving the SSA source function parameterizations. The best source functions reproduced as much as 70% of the observed SSA concentration variability at several stations, which is comparable with "state of the art" aerosol models. The main driver of SSA production is wind, and we found that the best fit to the observation data could be obtained when the SSA production is proportional to U103.5, where U10 is the source region averaged 10 m wind speed. A strong influence of SST on SSA production, with higher temperatures leading to higher production, could be detected as well, although the underlying physical mechanisms of the SST influence remains unclear. Our new source function with wind speed and temperature dependence gives a global SSA production for particles smaller than Dp < 10 μm of 9 Pg yr−1, and is the best fit to the observed concentrations.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3