Global modelling of direct and indirect effects of sea spray aerosol using a source function encapsulating wave state

Author:

Partanen A.-I.ORCID,Dunne E. M.,Bergman T.ORCID,Laakso A.ORCID,Kokkola H.ORCID,Ovadnevaite J.,Sogacheva L.,Baisnée D.,Sciare J.,Manders A.,O'Dowd C.,de Leeuw G.ORCID,Korhonen H.ORCID

Abstract

Abstract. Recently developed parameterizations for the sea spray aerosol source flux, encapsulating wave state, and its organic fraction were incorporated into the aerosol–climate model ECHAM-HAMMOZ to investigate the direct and indirect radiative effects of sea spray aerosol particles. Our simulated global sea salt emission of 805 Tg yr−1 (uncertainty range 378–1233 Tg yr−1) was much lower than typically found in previous studies. Modelled sea salt and sodium ion concentrations agreed relatively well with measurements in the smaller size ranges at Mace Head (annual normalized mean model bias −13% for particles with vacuum aerodynamic diameter Dva < 1 μm), Point Reyes (−29% for particles with aerodynamic diameter Da < 2.5 μm) and Amsterdam Island (−52% for particles with Da < 1 μm) but the larger sizes were overestimated (899% for particles with 2.5 μm < Da < 10 μm) at Amsterdam Island. This suggests that at least the high end of the previous estimates of sea spray mass emissions is unrealistic. On the other hand, the model clearly underestimated the observed concentrations of organic or total carbonaceous aerosol at Mace Head (−82%) and Amsterdam Island (−68%). The large overestimation (212%) of organic matter at Point Reyes was due to the contribution of continental sources. At the remote Amsterdam Island site, the organic concentration was underestimated especially in the biologically active months, suggesting a need to improve the parameterization of the organic sea spray fraction. Globally, the satellite-retrieved AOD over the oceans, using PARASOL data, was underestimated by the model (means over ocean 0.16 and 0.10, respectively); however, in the pristine region around Amsterdam Island the measured AOD fell well within the simulated uncertainty range. The simulated sea spray aerosol contribution to the indirect radiative effect was positive (0.3 W m−2), in contrast to previous studies. This positive effect was ascribed to the tendency of sea salt aerosol to suppress both the in-cloud supersaturation and the formation of cloud condensation nuclei from sulfate. These effects can be accounted for only in models with sufficiently detailed aerosol microphysics and physics-based parameterizations of cloud activation. However, due to a strong negative direct effect, the simulated effective radiative forcing (total radiative) effect was −0.2 W m−2. The simulated radiative effects of the primary marine organic emissions were small, with a direct effect of 0.03 W m−2 and an indirect effect of −0.07 W m−2.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3