Recent trends in aerosol optical properties derived from AERONET measurements

Author:

Li J.ORCID,Carlson B. E.,Dubovik O.ORCID,Lacis A. A.

Abstract

Abstract. The Aerosol Robotic Network (AERONET) has been providing high-quality retrievals of aerosol optical properties from the surface at worldwide locations for more than a decade. Many sites have continuous and consistent records for more than 10 years, which enables the investigation of long-term trends in aerosol properties at these locations. In this study, we present the results of a trend analysis at selected stations with long data records. In addition to commonly studied parameters such as aerosol optical depth (AOD) and Ångström exponent (AE), we also focus on inversion products including absorption aerosol optical depth (ABS), single-scattering albedo (SSA) and the absorption Ångström exponent (AAE). Level 2.0 quality assured data are the primary source. However, due to the scarcity of level 2.0 inversion products resulting from the strict AOD quality control threshold, we have also analyzed level 1.5 data, with some quality control screening to provide a reference for global results. Two statistical methods are used to detect and estimate the trend: the Mann–Kendall test associated with Sen's slope and linear least-squares fitting. The results of these statistical tests agree well in terms of the significance of the trend for the majority of the cases. The results indicate that Europe and North America experienced a uniform decrease in AOD, while significant (>90%) increases in these two parameters are found for North India and the Arabian Peninsula. The AE trends turn out to be different for North America and Europe, with increases for the former and decreases for the latter, suggesting opposite changes in fine/coarse-mode fraction. For level 2.0 inversion parameters, Beijing and Kanpur both experienced an increase in SSA. Beijing also shows a reduction in ABS, while the SSA increase for Kanpur is mainly due the increase in scattering aerosols. Increased absorption and reduced SSA are found at Solar_Village. At level 1.5, most European and North American sites also show positive SSA and negative ABS trends, although the data are more uncertain. The AAE trends are less spatially coherent due to large uncertainties, except for a robust increase at three sites in West Africa, which suggests a possible reduction in black carbon. Overall, the trends do not exhibit obvious seasonality for the majority of parameters and stations.

Funder

Goddard Space Flight Center

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 138 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3