Trends in peroxyacetyl nitrate (PAN) in the upper troposphere and lower stratosphere over southern Asia during the summer monsoon season: regional impacts

Author:

Fadnavis S.ORCID,Schultz M. G.ORCID,Semeniuk K.ORCID,Mahajan A. S.ORCID,Pozzoli L.ORCID,Sonbawne S.,Ghude S. D.,Kiefer M.,Eckert E.ORCID

Abstract

Abstract. We analyze temporal trends of peroxyacetyl nitrate (PAN) retrievals from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) during 2002–2011 in the altitude range 8–23 km over the Asian summer monsoon (ASM) region. The greatest enhancements of PAN mixing ratios in the upper troposphere and lower stratosphere (UTLS) are seen during the summer monsoon season from June to September. During the monsoon season, the mole fractions of PAN show statistically significant (at 2σ) positive trends from 0.2 ± 0.05 to 4.6 ± 3.1 ppt yr−1 (except between 12 and 14 km) which is higher than the annual mean trends of 0.1 ± 0.05 to 2.7 ± 0.8 ppt yr−1. These rising concentrations point to increasing NOx (= NO + NO2) and volatile organic compound (VOC) emissions from developing nations in Asia, notably India and China. We analyze the influence of monsoon convection on the distribution of PAN in UTLS with simulations using the global chemistry–climate model ECHAM5-HAMMOZ. During the monsoon, transport into the UTLS over the Asian region primarily occurs from two convective zones, one the South China Sea and the other over the southern flank of the Himalayas. India and China host NOx-limited regimes for ozone photochemical production, and thus we use the model to evaluate the contributions from enhanced NOx emissions to the changes in PAN, HNO3 and O3 concentrations in the UTLS. From a set of sensitivity experiments with emission changes in particular regions, it can be concluded that Chinese emissions have a greater impact on the concentrations of these species than Indian emissions. According to SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY) NO2 retrievals NOx emissions increases over India have been about half of those over China between 2002 and 2011.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3