Nitrous oxide emissions from a commercial cornfield (<i>Zea mays</i>) measured using the eddy covariance technique

Author:

Huang H.,Wang J.,Hui D.ORCID,Miller D. R.,Bhattarai S.,Dennis S.,Smart D.,Sammis T.,Reddy K. C.

Abstract

Abstract. Increases in observed atmospheric concentrations of the long-lived greenhouse gas nitrous oxide (N2O) have been well documented. However, information on event-related instantaneous emissions during fertilizer applications is lacking. With the development of fast-response N2O analyzers, the eddy covariance (EC) technique can be used to gather instantaneous measurements of N2O concentrations to quantify the exchange of nitrogen between the soil and atmosphere. The objectives of this study were to evaluate the performance of a new EC system, to measure the N2O flux with the system, and finally to examine relationships of the N2O flux with soil temperature, soil moisture, precipitation, and fertilization events. An EC system was assembled with a sonic anemometer and a fast-response N2O analyzer (quantum cascade laser spectrometer) and applied in a cornfield in Nolensville, Tennessee during the 2012 corn growing season (4 April–8 August). Fertilizer amounts totaling 217 kg N ha−1 were applied to the experimental site. Results showed that this N2O EC system provided reliable N2O flux measurements. The cumulative emitted N2O amount for the entire growing season was 6.87 kg N2O-N ha−1. Seasonal fluxes were highly dependent on soil moisture rather than soil temperature. This study was one of the few experiments that continuously measured instantaneous, high-frequency N2O emissions in crop fields over a growing season of more than 100 days.

Funder

National Institute of Food and Agriculture

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3