On the impact of the temporal variability of the collisional quenching process on the mesospheric OH emission layer: a study based on SD-WACCM4 and SABER

Author:

Kowalewski S.ORCID,von Savigny C.,Palm M.ORCID,McDade I. C.,Notholt J.

Abstract

Abstract. The mesospheric OH Meinel emissions are subject of many theoretical and observational studies devoted to this part of the atmosphere. Depending on the initial vibrational level of excitation the altitude of the considered OH Meinel emission is systematically shifted, which has important implications for the intercomparison of different studies considering different transition bands. Previous model studies suggest that these vertical shifts are essentially caused by the process of collisional quenching with atomic oxygen. Following this hypothesis, a recent study found experimental evidence of a coherent seasonality at tropical latitudes between vertical shifts of different OH Meinel bands and changes in atomic oxygen concentrations. Despite the consistent finding of the above mentioned hypothesis, it cannot be excluded that the actual temporal variability of the vertical shifts between different OH Meinel bands may in addition be controlled or even dominated by other processes. It remains an open question whether the observed temporal evolution is indeed mainly controlled by the modulation of the collisional quenching process with atomic oxygen. By means of a sensitivity study which employs a quenching model to simulations made with the SD-WACCM4 chemistry climate model, we aim at assessing this question. From this study we find that the observed seasonality of vertical OH Meinel shifts is only partially controlled by temporal changes in atomic oxygen concentrations, while molecular oxygen has another noticeable impact on the vertical OH Meinel shifts. This in particular becomes evident for the diurnal variability of vertical OH Meinel shifts, which reveal only a poor correlation with the atomic oxygen species. Furthermore, changes in the H + O3 source gases provide another mechanism that can potentially affect the diurnal variability in addition. By comparison with limb radiance observations from the SABER/TIMED satellite this provides an explanation for the less evident diurnal response between changes in O concentrations and vertical OH Meinel shifts. On the other hand, at seasonal timescales the coherency between both quantities is again evident in SABER/TIMED but less pronounced compared to our model simulations.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3