Radiocarbon analysis of elemental and organic carbon in Switzerland during winter-smog episodes from 2008 to 2012 – Part 1: Source apportionment and spatial variability

Author:

Zotter P.,Ciobanu V. G.,Zhang Y. L.ORCID,El-Haddad I.,Macchia M.,Daellenbach K. R.ORCID,Salazar G. A.,Huang R.-J.,Wacker L.,Hueglin C.ORCID,Piazzalunga A.,Fermo P.,Schwikowski M.ORCID,Baltensperger U.,Szidat S.ORCID,Prévôt A. S. H.

Abstract

Abstract. While several studies have investigated winter-time air pollution with a wide range of concentration levels, hardly any results are available for longer time periods covering several winter-smog episodes at various locations; e.g., often only a few weeks from a single winter are investigated. Here, we present source apportionment results of winter-smog episodes from 16 air pollution monitoring stations across Switzerland from five consecutive winters. Radiocarbon (14C) analyses of the elemental (EC) and organic (OC) carbon fractions, as well as levoglucosan, major water-soluble ionic species and gas-phase pollutant measurements were used to characterize the different sources of PM10. The most important contributions to PM10 during winter-smog episodes in Switzerland were on average the secondary inorganic constituents (sum of nitrate, sulfate and ammonium = 41 ± 15%) followed by organic matter (OM) (34 ± 13%) and EC (5 ± 2%). The non-fossil fractions of OC (fNF,OC) ranged on average from 69 to 85 and 80 to 95% for stations north and south of the Alps, respectively, showing that traffic contributes on average only up to ~ 30% to OC. The non-fossil fraction of EC (fNF,EC), entirely attributable to primary wood burning, was on average 42 ± 13 and 49 ± 15% for north and south of the Alps, respectively. While a high correlation was observed between fossil EC and nitrogen oxides, both primarily emitted by traffic, these species did not significantly correlate with fossil OC (OCF), which seems to suggest that a considerable amount of OCF is secondary, from fossil precursors. Elevated fNF,EC and fNF,OC values and the high correlation of the latter with other wood burning markers, including levoglucosan and water soluble potassium (K+) indicate that residential wood burning is the major source of carbonaceous aerosols during winter-smog episodes in Switzerland. The inspection of the non-fossil OC and EC levels and the relation with levoglucosan and water-soluble K+ shows different ratios for stations north and south of the Alps (most likely because of differences in burning technologies) for these two regions in Switzerland.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference96 articles.

1. Andersson, A., Sheesley, R. J., Kruså, M., Johansson, C., and Gustafsson, Ö.: 14C-based source assessment of soot aerosols in Stockholm and the Swedish EMEP-Aspvreten regional background site, Atmos. Environ., 45, 215–222, https://doi.org/10.1016/j.atmosenv.2010.09.015, 2011.

2. BAG - Bundesamt für Gesundheit, Jahresberichte Umweltradioaktivität und Strahlendosen: Umweltradioaktivität und Strahlendosen in der Schweiz 2007, available at: http://www.bag.admin.ch/themen/strahlung/00043/00065/02239/index.html?lang=de (last access: 30 April 2014), 2008.

3. Barmpadimos, I., Hueglin, C., Keller, J., Henne, S., and Prévôt, A. S. H.: Influence of meteorology on PM10 trends and variability in Switzerland from 1991 to 2008, Atmos. Chem. Phys., 11, 1813–1835, https://doi.org/10.5194/acp-11-1813-2011, 2011.

4. Bernardoni, V., Calzolai, G., Chiari, M., Fedi, M., Lucarelli, F., Nava, S., Piazzalunga, A., Riccobono, F., Taccetti, F., Valli, G., and Vecchi, R.: Radiocarbon analysis on organic and elemental carbon in aerosol samples and source apportionment at an urban site in Northern Italy, J. Aerosol. Sci., 56, 88–99, https://doi.org/10.1016/j.jaerosci.2012.06.001, 2013.

5. Canonaco, F., Crippa, M., Slowik, J. G., Baltensperger, U., and Prévôt, A. S. H.: SoFi, an IGOR-based interface for the efficient use of the generalized multilinear engine (ME-2) for the source apportionment: ME-2 application to aerosol mass spectrometer data, Atmos. Meas. Tech., 6, 3649–3661, https://doi.org/10.5194/amt-6-3649-2013, 2013.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3