Microphysical properties of synoptic scale polar stratospheric clouds: in situ measurements of unexpectedly large HNO<sub>3</sub> containing particles in the Arctic vortex

Author:

Molleker S.ORCID,Borrmann S.ORCID,Schlager H.,Luo B.,Frey W.ORCID,Klingebiel M.,Weigel R.ORCID,Ebert M.,Mitev V.,Matthey R.ORCID,Woiwode W.,Oelhaf H.,Dörnbrack A.ORCID,Stratmann G.,Grooß J.-U.ORCID,Günther G.ORCID,Vogel B.ORCID,Müller R.ORCID,Krämer M.ORCID,Meyer J.,Cairo F.

Abstract

Abstract. In January 2010 and December 2011 synoptic scale PSC fields were probed during seven flights of the high altitude research aircraft M-55 Geophysica within the RECONCILE (Reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interaction.) and the ESSenCe (ESSenCe: ESA Sounder Campaign) projects. Particle size distributions in a diameter range between 0.46 μm and 40 μm were recorded simultaneously by up to four different optical in situ instruments. Three of these particle instruments are based on the detection of forward scattered light by single particles. The fourth instrument is a grey scale optical array imaging probe. Optical particle diameters of up to 35 μm were detected with particle number densities and total particle volumes exceeding previous Arctic measurements. Also, gas phase and particle bound NOy were measured, as well as water vapor concentrations, and other variables. Two remote sensing particle instruments, the Miniature Aerosol Lidar (MAL) and the backscatter sonde (MAS, Multiwavelenght Aerosol Scatterometer) showed the synoptic scale of the encountered PSCs. The particle mode below 2 μm in size diameter has been identified as supercooled ternary solution droplets (STS). The PSC particles in the size range above 2 μm in diameter are considered to consist of nitric acid hydrates or ice, and the particles' high HNO3 content was confirmed by the NOy instrument. Assuming a particle composition of nitric acid trihydrate (NAT), the optically measured size distributions result in particle-phase HNO3 mixing ratios exceeding available stratospheric values. In particular, with respect to the denitrification by sedimentation of large HNO3-contaning particles, generally considered as NAT, our new measurements raise questions concerning composition, shape and nucleation pathways. Measurement uncertainties are discussed concerning probable overestimations of measured particle sizes and volumes. We hypothesize that either a strong asphericity or the particle composition (e.g. water-ice coated with NAT) could explain our observations.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3