Optical, microphysical and compositional properties of the Eyjafjallajökull volcanic ash
Author:
Rocha-Lima A., Martins J. V., Remer L. A., Krotkov N. A.ORCID, Tabacniks M. H., Ben-Ami Y., Artaxo P.ORCID
Abstract
Abstract. Microphysical, optical, and compositional properties of the volcanic ash from the April–May (2010) Eyjafjallajökull volcanic eruption are presented. Samples of the volcanic ash were taken on the ground in the vicinity of the volcano. The material was sieved, re-suspended, and collected on filters, separating particle sizes into coarse and fine modes. The spectral mass absorption efficiency αabs [m2 g−1] was determined for coarse and fine particles in the wavelength range from 300 to 2500 nm. Size distribution of particles on filters was obtained using a semi-automatic software to analyze images obtained by Scanning Electron Microscopy (SEM). The grain density of the volcanic ash was determined as 2.16(13) g cm−3 by measuring the variation of air volume in a system with volcanic ash and air under compression. Using Mie–Lorenz and T-matrix theories, the imaginary part of the refractive index was derived. Results show the spectral imaginary refractive index ranging from 0.001 to 0.005. Fine and coarse particles were analyzed by X-Ray fluorescence for elemental composition. Fine and coarse mode particles exhibit distinct compositional and optical differences.
Publisher
Copernicus GmbH
Reference30 articles.
1. Abràmoff, M. D., Magalhães, P. J., and Ram, S. J.: Image processing with ImageJ, Biophotonics International, 11, 36–42, 2004. 2. Ansmann, A., Tesche, M., Groß, S., Freudenthaler, V., Seifert, P., Hiebsch, A., Schmidt, J., Wandinger, U., Mattis, I., Muller, D., and Wiegner, M.: The 16 April 2010 major volcanic ash plume over central Europe: EARLINET lidar and AERONET photometer observations at Leipzig and Munich, Germany, Geophys. Res. Lett., 37, L13810, https://doi.org/10.1029/2010GL043809, 2010. 3. Bukowiecki, N., Zieger, P., Weingartner, E., Jurányi, Z., Gysel, M., Neininger, B., Schneider, B., Hueglin, C., Ulrich, A., Wichser, A., Henne, S., Brunner, D., Kaegi, R., Schwikowski, M., Tobler, L., Wienhold, F. G., Engel, I., Buchmann, B., Peter, T., and Baltensperger, U.: Ground-based and airborne in-situ measurements of the Eyjafjallajökull volcanic aerosol plume in Switzerland in spring 2010, Atmos. Chem. Phys., 11, 10011–10030, https://doi.org/10.5194/acp-11-10011-2011, 2011. 4. Buzzard, G. H. and Parker, R. D.: A two stage particle fractinator using large pore nuclepore surfaces, US Environmental Protection Agency, Environmental Sciences Research Laboratory, Research Triangle Park, N.C., USA, 1981. 5. Casadevall, T. J.: Volcanic Ash and Aviation Safety, in: Proceedings of the First International Symposium on Volcanic Ash and Aviation Safety, US Geological Survey USGS Bulletin 2047, 1–6, 1994.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|