Optical, microphysical and compositional properties of the Eyjafjallajökull volcanic ash

Author:

Rocha-Lima A.,Martins J. V.,Remer L. A.,Krotkov N. A.ORCID,Tabacniks M. H.,Ben-Ami Y.,Artaxo P.ORCID

Abstract

Abstract. Microphysical, optical, and compositional properties of the volcanic ash from the April–May (2010) Eyjafjallajökull volcanic eruption are presented. Samples of the volcanic ash were taken on the ground in the vicinity of the volcano. The material was sieved, re-suspended, and collected on filters, separating particle sizes into coarse and fine modes. The spectral mass absorption efficiency αabs [m2 g−1] was determined for coarse and fine particles in the wavelength range from 300 to 2500 nm. Size distribution of particles on filters was obtained using a semi-automatic software to analyze images obtained by Scanning Electron Microscopy (SEM). The grain density of the volcanic ash was determined as 2.16(13) g cm−3 by measuring the variation of air volume in a system with volcanic ash and air under compression. Using Mie–Lorenz and T-matrix theories, the imaginary part of the refractive index was derived. Results show the spectral imaginary refractive index ranging from 0.001 to 0.005. Fine and coarse particles were analyzed by X-Ray fluorescence for elemental composition. Fine and coarse mode particles exhibit distinct compositional and optical differences.

Publisher

Copernicus GmbH

Reference30 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reference data set of volcanic ash physicochemical and optical properties;Journal of Geophysical Research: Atmospheres;2017-09-07

2. Measurements of the complex refractive index of volcanic ash at 450, 546.7, and 650 nm;Journal of Geophysical Research: Atmospheres;2015-08-08

3. Optical modeling of volcanic ash particles using ellipsoids;Journal of Geophysical Research: Atmospheres;2015-05-04

4. Aerosol radiative forcing from the 2010 Eyjafjallajökull volcanic eruptions;Journal of Geophysical Research: Atmospheres;2014-08-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3