Abstract
Abstract. In this work a new thermodynamic framework is developed and used to investigate the effect of water activity on the formation of ice within supercooled droplets. The new framework is based on a novel concept where the interface is assumed to be made of liquid molecules "trapped" by the solid matrix. Using this concept new expressions are developed for the critical ice germ size and the nucleation work, with explicit dependencies on temperature and water activity. However unlike previous approaches, the new model does not depend on the interfacial tension between liquid and ice. Comparison against experimental results shows that the new theory is able to reproduce the observed effect of water activity on nucleation rate and freezing temperature. It allows for the first time a phenomenological derivation of the constant shift in water activity between melting and nucleation. The new framework offers a consistent thermodynamic view of ice nucleation, simple enough to be applied in atmospheric models of cloud formation.
Reference60 articles.
1. Alpert, P. A., Aller, J. Y., and Knopf, D. A.: Initiation of the ice phase by marine biogenic surfaces in supersaturated gas and supercooled aqueous phases, Phys. Chem. Chem. Phys., 13, 19882–19894, 2011.
2. Baker, M. and Baker, M.: A new look at homogeneous freezing of water, Geophys. Res. Lett., 31, L19102, https://doi.org/10.1029/2004GL0204, 2004.
3. Barahona, D.: On the ice nucleation spectrum, Atmos. Chem. Phys., 12, 3733–3752, https://doi.org/10.5194/acp-12-3733-2012, 2012.
4. Barahona, D. and Nenes, A.: Parameterization of cirrus formation in large scale models: homogeneous nucleation, J. Geophys. Res., 113, D11211, https://doi.org/10.1029/2007JD009355, 2008.
5. Barahona, D. and Nenes, A.: Dynamical states of low temperature cirrus, Atmos. Chem. Phys., 11, 3757–3771, https://doi.org/10.5194/acp-11-3757-2011, 2011.