Aviation 2006 NO<sub>x</sub>-induced effects on atmospheric ozone and HO<sub>x</sub> in Community Earth System Model (CESM)

Author:

Khodayari A.,Tilmes S.ORCID,Olsen S. C.,Phoenix D. B.,Wuebbles D. J.,Lamarque J.-F.ORCID,Chen C.-C.

Abstract

Abstract. The interaction between atmospheric chemistry and ozone (O3) in the upper troposphere and lower stratosphere (UTLS) presents a major uncertainty in understanding the effects of aviation on climate. In this study, two configurations of the atmospheric model from the Community Earth System Model (CESM), CAM4 and CAM5, are used to evaluate the effects of aircraft nitrogen oxide (NOx = NO + NO2) emissions on ozone and the background chemistry in the UTLS. CAM4 and CAM5 simulations were both performed with extensive tropospheric and stratospheric chemistry including 133 species and 330 photochemical reactions. CAM5 includes direct and indirect aerosol effects on clouds using a modal aerosol module (MAM) whereby CAM4 uses a bulk aerosol module which can only simulate the direct effect. To examine the accuracy of the aviation NOx induced ozone distribution in the two models, results from the CAM5 and CAM4 simulations are compared to ozonesonde data. Aviation NOx emissions for 2006 were obtained from the AEDT (Aviation Environmental Design Tool) global commercial aircraft emissions inventory. Differences between simulated O3 concentrations and ozonesonde measurements averaged at representative levels in the troposphere and different regions are 13% in CAM5 and 18% in CAM4. Results show a localized increase in aviation induced O3 concentrations at aviation cruise altitudes that stretches from 40° N to the North Pole. The results indicate a greater and more disperse production of aviation NOx-induced ozone in CAM5, with the annual tropospheric mean O3 perturbation of 1.3 ppb (2.7%) for CAM5 and 1.0 ppb (1.9%) for CAM4. The annual mean O3 perturbation peaks at about 8.3 ppb (6.4%) and 8.8 ppb (5.2%) in CAM5 and CAM4, respectively. Aviation emissions also result in increased OH concentrations and methane (CH4) loss rates, reducing the tropospheric methane lifetime in CAM5 and CAM4 by 1.9% and 1.40%, respectively. Aviation NOx emissions are associated with a change in global mean O3 radiative forcing (RF) of 43.9 and 36.5 mW m−2 in CAM5 and CAM4, respectively.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3