Extreme haze pollution in Beijing during January 2013: chemical characteristics, formation mechanism and role of fog processing

Author:

Huang K.,Zhuang G.,Wang Q.,Fu J. S.ORCID,Lin Y.,Liu T.,Han L.,Deng C.

Abstract

Abstract. Severe haze hovered over large areas of China in January 2013 right after the public release of PM2.5 data of major cities in China at the very first time. This historical severe haze emerged over the northern China with monthly average concentrations of PM2.5, SO2, and NO2 exceeding 225, 200, and 80 μg m−3, respectively. Surface aerosol mean concentration of Beijing in January 2013 reached record high (only slightly lower than 2006) compared to historical data from 2003–2012, but with the largest daily fluctuation. Anomalous meteorological conditions in 2013 compared to the mean climatology from 2007–2012 were especially favorable for the formation of haze, such as higher humidity, lower temperature, lower PBL height, lower wind speed, and the high frequency of fog occurrences. The field campaign in Beijing showed an extremely high PM2.5 average concentration of 299.2 ± 79.1μg m−3 with extremely low visibility of 0.92 ± 0.82 km during an episode of high relative humidity with fog events. High AOD (Aerosol Optical Depth) was observed during fog days but with relatively low Angstrom exponent (< 1.0), suggesting the modification of fog processing on the particle size. Major aerosol chemical species, such as SO42−, NO3−, NH4+, Cl−, K+, and C2O42− presented an explicit exponential growth relationship with relative humidity, suggesting the significant impact of aerosol hygroscopicity on the visibility impairment. SO42− increased ∼5 folds while NO3−, NH4+, and C2O42− increased ∼3 folds in the fog days compared to the non-fog days. Aerosol in fog days was much more acidic than that in non-fog days. The in situ aerosol pH ranged from −0.78 to 0.14 in fog days based on the E-AIM model simulation. Bisulfate (HSO42−) accounted for 52% of the total sulfate and free hydrogen ion (H+Aq) accounted for 27% of the total acids in average. Enhanced coal combustion during the winter heating season along with traffic and industrial emissions were recognized to be the major causes for this severe haze. Fog processing was found to be the major pathway of producing extremely high yields of secondary inorganic aerosol and impacting the neutralization process (i.e. aerosol acidity) in this study.

Publisher

Copernicus GmbH

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3