Methane as a diagnostic tracer of changes in the net circulation of the middle atmosphere

Author:

Remsberg E. E.ORCID

Abstract

Abstract. This study makes use of time series of methane (CH4) data from the Halogen Occultation Experiment (HALOE) to determine whether there were any statistically significant changes of the net circulation within the stratosphere and lower mesosphere during 1992–2005. HALOE CH4 profiles in terms of mixing ratio vs. pressure-altitude are binned into subtropical and extratropical latitude zones of the southern and of the Northern Hemisphere, and their separate time series are then analyzed using multiple linear regression (MLR) techniques. A positive trend in the subtropics and a negative trend in the extratropics is interpreted as indicating an acceleration of the net circulation. A significant acceleration is found in the Northern Hemisphere from 20 hPa to 7 hPa, a likely indication of changes from the effects of wave activity during those years. No similar acceleration is found in the Southern Hemisphere. The trends from HALOE H2O are analyzed and compared with those from CH4 for consistency because H2O is a primary product in the upper stratosphere of the chemical conversion of CH4. The CH4 and H2O trends have a ratio of nearly 2 : 1, and they are anti-correlated most clearly near the stratopause in the southern extratropics. Seasonal anomalies are found in the HALOE CH4 time series of the lower mesosphere, and they are ascribed to wave-driven, secondary residual circulation cells associated with the descent of the SAO westerlies. The time series residuals for CH4 of the lower mesosphere also exhibit aperiodic structure, and it is anti-correlated with that of the tracer-like species HCl. Such structure indicates the effects of variations in the wave forcing. It is concluded that multi-year, global-scale distributions of CH4 are very useful for diagnosing large-scale changes of the net transport within the middle atmosphere.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3