New-particle formation, growth and climate-relevant particle production in Egbert, Canada: analysis from one year of size-distribution observations

Author:

Pierce J. R.ORCID,Westervelt D. M.,Atwood S. A.,Barnes E. A.,Leaitch W. R.

Abstract

Abstract. Aerosol particle nucleation, or new-particle formation, is the dominant contributor to particle number in the atmosphere. However, these particles must grow through condensation of low-volatility vapors without coagulating with the larger, pre-existing particles in order to reach climate-relevant sizes (diameters larger than 50–100 nm), where the particles may affect clouds and radiation. In this paper, we use one year of size-distribution measurements from Egbert, Ontario, Canada to calculate the frequency of regional-scale new-particle formation events, new-particle formation rates, growth rates and the fraction of new particles that survive to reach climate-relevant sizes. Regional-scale new-particle formation events occurred on 14–31% of the days (depending on the stringency of the classification criteria), with event frequency peaking in the spring and fall. New-particle formation rates and growth rates were similar to those measured at other mid-latitude continental sites. We calculate that roughly half of the climate-relevant particles (with diameters larger than 50–100 nm) at Egbert are formed through new-particle formation events. With the addition of meteorological and SO2 measurements, we find that new-particle formation often occurred under synoptic conditions associated with high surface pressure and large-scale subsidence that cause sunny conditions and clean-air flow from the north and west. However, new-particle formation also occurred when air flow came from the polluted regions to the south and southwest of Egbert. The nucleation rates tend to be faster during events under the polluted south/southwest flow conditions.

Publisher

Copernicus GmbH

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3