Relations between erythemal UV dose, global solar radiation, total ozone column and aerosol optical depth at Uccle, Belgium

Author:

De Bock V.ORCID,De Backer H.ORCID,Van Malderen R.ORCID,Mangold A.,Delcloo A.ORCID

Abstract

Abstract. At Uccle, a long time series (1991–2013) of simultaneous measurements of erythemal ultraviolet (UV) dose, global solar radiation, total ozone column (TOC) and Aerosol Optical Depth (AOD) (at 320.1 nm) is available which allows for an extensive study of the changes in the variables over time. A change-point analysis, which determines whether there is a significant change in the mean of the time series, is applied to the monthly anomalies time series of the variables. Only for erythemal UV dose and TOC, a significant change point (without any known instrumental cause) was present in the time series around February 1998 and March 1998 respectively. The change point in TOC corresponds with results found in literature, where the change in ozone levels (around 1997) is attributed to the recovery of ozone. Linear trends were determined for the different (monthly anomalies) time series. Erythemal UV dose, global solar radiation and TOC all increase with respectively 7, 4 and 3% per decade. AOD shows an (insignificant) negative trend of −8% per decade. These trends agree with results found in literature for sites with comparable latitudes. A multiple linear regression (MLR) analysis is applied to the data in order to study the influence of global solar radiation, TOC and AOD on the erythemal UV dose. Together these parameters are able to explain 94% of the variation in erythemal UV dose. Most of the variation (56%) in erythemal UV dose is explained by global solar radiation. The regression model performs well with a slight tendency to underestimate the measured erythemal UV doses and with a Mean Absolute Bias Error (MABE) of 18%. However, in winter, negative erythemal UV dose values are modeled. Applying the MLR to the individual seasons solves this issue. The seasonal models have an adjusted R2 value higher than 0.8 and the correlation between modeled and measured erythemal UV dose values is higher than 0.9 for each season. The summer model gives the best performance, with an absolute mean error of only 6%. Again, global solar radiation is the factor that contributes the most to the variation in erythemal UV dose, so there is no doubt about the necessity to include this factor in the regression models. A large part of the influence of AOD is already represented by the global solar radiation parameter. Therefore the individual contribution of AOD to erythemal UV dose is so low. For this reason, it seems unnecessary to include AOD in the MLR analysis. Including TOC however, is justified as the adjusted R2 increases and the MABE of the model decreases compared to a model where only global solar radiation is used as explanatory variable.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3