Elemental composition and clustering of α-pinene oxidation products for different oxidation conditions
Author:
Praplan A. P., Schobesberger S.ORCID, Bianchi F.ORCID, Rissanen M. P.ORCID, Ehn M.ORCID, Jokinen T.ORCID, Junninen H.ORCID, Adamov A., Amorim A., Dommen J.ORCID, Duplissy J., Hakala J., Hansel A.ORCID, Heinritzi M., Kangasluoma J.ORCID, Kirkby J.ORCID, Krapf M., Kürten A., Lehtipalo K.ORCID, Riccobono F., Rondo L., Sarnela N., Simon M.ORCID, Tomé A., Tröstl J.ORCID, Winkler P. M., Williamson C., Ye P., Curtius J.ORCID, Baltensperger U., Donahue N. M.ORCID, Kulmala M.ORCID, Worsnop D. R.
Abstract
Abstract. This study presents the difference between oxidised organic compounds formed by α-pinene ozonolysis and hydroxyl radical (OH) oxidation in the CLOUD environmental chamber. The results from three Atmospheric Pressure interface Time-Of-Flight (APi-TOF) mass spectrometers measuring simultaneously the composition of naturally charged, as well as neutral species (via chemical ionisation with nitrate) are discussed. Natural chemical ionisation takes place in the CLOUD chamber and organic oxidised compounds form clusters with nitrate, bisulphate, bisulphate/sulphuric acid clusters, ammonium, and dimethylaminium, or get protonated. This process is selective towards various oxidised organic compounds, so that in order to get a comprehensive picture of the elemental composition of oxidation products, several instruments must be used. A comparison between oxidation products containing 10 and 20 carbon atoms is presented. Oxidation products from ozonolysis showed a higher oxidation state than the ones from OH oxidation. Also, highly oxidised organic compounds are shown to be formed in the early stages of the oxidation, for low α-pinene levels.
Publisher
Copernicus GmbH
Reference53 articles.
1. Almeida, J., Schobesberger, S., Kürten, A., Ortega, I. K., Kupiainen-Määttä, O., Praplan, A. P., Adamov, A., Amorim, A., Bianchi, F., Breitenlechner, M., David, A., Dommen, J., Donahue, N. M., Downard, A., Dunne, E., Duplissy, J., Ehrhart, S., Flagan, R. C., Franchin, A., Guida, R., Hakala, J., Hansel, A., Heinritzi, M., Henschel, H., Jokinen, T., Junninen, H., Kajos, M., Kangasluoma, J., Keskinen, H., Kupc, A., Kurtén, T., Kvashin, A. N., Laaksonen, A., Lehtipalo, K., Leiminger, M., Leppä, J., Loukonen, V., Makhmutov, V., Mathot, S., McGrath, M. J., Nieminen, T., Olenius, T., Onnela, A., Petäjä, T., Riccobono, F., Riipinen, I., Rissanen, M., Rondo, L., Ruuskanen, T., Santos, F. D., Sarnela, N., Schallhart, S., Schnitzhofer, R., Seinfeld, J. H., Simon, M., Sipilä, M., Stozhkov, Y., Stratmann, F., Tomé, A., Tröstl, J., Tsagkogeorgas, G., Vaattovaara, P., Viisanen, Y., Virtanen, A., Vrtala, A., Wagner, P. E., Weingartner, E., Wex, H., Williamson, C., Wimmer, D., Ye, P., Yli-Juuti, T., Carslaw, K. S., Kulmala, M., Curtius, J., Baltensperger, U., Worsnop, D. R., Vehkamäki, H., and Kirkby, J.: Molecular understanding of sulphuric acid–amine particle nucleation in the atmosphere, Nature, 502, 359–363, https://doi.org/10.1038/nature12663, 2013. 2. Atkinson, R.: Atmospheric chemistry of VOCs and NOx, Atmos. Environ., 34, 2063–2101, https://doi.org/10.1016/S1352-2310(99)00460-4, 2000. 3. Bianchi, F., Praplan, A. P., Sarnela, N., Dommen, J., Kürten, A., Ortega, I. K., Schobesberger, S., Junninen, H., Simon, M., Tröstl, J., Jokinen, T., Sipilä, M., Adamov, A., Amorim, A., Almeida, J., Breitenlechner, M., Duplissy, J., Ehrhart, S., Flagan, R. C., Franchin, A., Hakala, J., Hansel, A., Heinritzi, M., Kangasluoma, J., Keskinen, H., Kim, J., Kirkby, J., Laaksonen, A., Lawler, M. J., Lehtipalo, K., Leiminger, M., Makhmutov, V., Mathot, S., Onnela, A., Petäjä, T., Riccobono, F., Rissanen, M. P., Rondo, L., Tomé, A., Virtanen, A., Viisanen, Y., Williamson, C., Wimmer, D., Winkler, P. M., Ye, P., Curtius, J., Kulmala, M., Worsnop, D. R., Donahue, N. M., and Baltensperger, U.: Insight into acid-base nucleation experiments by comparison of the chemical composition of positive, negative, and neutral clusters, Environ. Sci. Technol., 48, 13675–13684, https://doi.org/10.1021/es502380b, 2014. 4. Christoffersen, T., Hjorth, J., Horie, O., Jensen, N., Kotzias, D., Molander, L., Neeb, P., Ruppert, L., Winterhalter, R., Virkkula, A., Wirtz, K., and Larsen, B.: cis-Pinic acid, a possible precursor for organic aerosol formation from ozonolysis of α-pinene, Atmos. Environ., 32, 1657–1661, https://doi.org/10.1016/S1352-2310(97)00448-2, 1998. 5. Claeys, M., Iinuma, Y., Szmigielski, R., Surratt, J. D., Blockhuys, F., Van Alsenoy, C., Böge, O., Sierau, B., Gómez-González, Y., Vermeylen, R., Van der Veken, P., Shahgholi, M., Chan, A. W. H., Herrmann, H., Seinfeld, J. H., and Maenhaut, W.: Terpenylic acid and related compounds from the oxidation of α-Pinene: implications for new particle formation and growth above forests, Environ. Sci. Technol., 43, 6976–6982, https://doi.org/10.1021/es9007596, 2009.
|
|