Elevation and elevation change of Greenland and Antarctica derived from CryoSat-2
Author:
Helm V.ORCID, Humbert A.ORCID, Miller H.
Abstract
Abstract. The ESA satellite CryoSat-2 has been observing Earth's polar regions since April 2010. It carries a sophisticated radar altimeter and aims for the detection of changes in sea ice thickness as well as surface elevation changes of Earth's land and marine ice sheets. This study focuses on the Greenland and Antarctic ice sheets, considering the contemporary elevation of their surfaces. Based on 2 years of CryoSat-2 data acquisition, elevation change maps and mass balance estimates are presented. Additionally, new digital elevation models (DEMs) and the corresponding error maps are derived. Due to the high orbit of CryoSat-2 (88° N/S) and the narrow across-track spacing, more than 99% of Antarctica's surface area is covered. In contrast, previous radar altimeter measurements of ERS1/2 and ENVISAT were limited to latitudes between 81.5° N and 81.5° S and to surface slopes below 1°. The derived DEMs for Greenland and Antarctica have an accuracy which is similar to previous DEMs obtained by satellite-based laser and radar altimetry (Liu et al., 2001; Bamber et al., 2009, 2013; Fretwell et al., 2013; Howat et al., 2014). Comparisons with ICESat data show that 80% of the CryoSat-2 DEMs have an error of less than 3 m ± 30 m. For both ice sheets the surface elevation change rates between 2011 and 2012 are presented at a resolution of 1 km. Negative elevation changes are concentrated at the west and south-east coast of Greenland and in the Amundsen Sea embayment in West Antarctica (e.g. Pine Island and Thwaites glaciers). They agree well with the dynamic mass loss observed by ICESat between 2003 and 2008 (Pritchard et al., 2009). Thickening occurs along the main trunk of Kamb Ice Stream and in Dronning Maud Land. While the former is a consequence of an ice stream stagnated ∼150 years ago (Rose, 1979; Retzlaff and Bentley, 1993), the latter represents a known large-scale accumulation event (Lenaerts et al., 2013). This anomaly partly compensates for the observed increased volume loss in West Antarctica. In Greenland the findings reveal an increased volume loss of a factor of 2 compared to the period 2003 to 2008. The combined volume loss of Greenland and Antarctica for the period 2011 and 2012 is estimated to be −448 ± 122 km3 yr−1.
Publisher
Copernicus GmbH
Reference57 articles.
1. Angelen, J., Broeke, M., Wouters, B., and Lenaerts, J.: Contemporary (1960–2012) evolution of the climate and surface mass balance of the Greenland Ice Sheet, Surv. Geophys., 1–20, https://doi.org/10.1007/s10712-013-9261-z, 2013. 2. Armitage, T., Wingham, D., and Ridout, A.: Meteorological origin of the static crossover pattern present in low-resolution-mode CryoSat-2 data over Central Antarctica, IEEE Geosci. Remote S., 11, 1295–1299, https://doi.org/10.1109/LGRS.2013.2292821, 2013. 3. Bamber, J. and Gomez-Dans, J. L.: The accuracy of digital elevation models of the Antarctic continent, Earth Planet. Sc. Lett., 237, 516–523, https://doi.org/10.1016/j.epsl.2005.06.008, 2005. 4. Bamber, J. L., Gomez-Dans, J. L., and Griggs, J.: Antarctic 1 km Digital Elevation Model (DEM) from combined ERS-1 radar and ICESat laser satellite altimetry, 2009. 5. Bamber, J. L., Griggs, J. A., Hurkmans, R. T. W. L., Dowdeswell, J. A., Gogineni, S. P., Howat, I., Mouginot, J., Paden, J., Palmer, S., Rignot, E., and Steinhage, D.: A new bed elevation dataset for Greenland, The Cryosphere, 7, 499–510, https://doi.org/10.5194/tc-7-499-2013, 2013.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|