Invited perspective: What lies beneath a changing Arctic?
-
Published:2021-02-01
Issue:1
Volume:15
Page:479-484
-
ISSN:1994-0424
-
Container-title:The Cryosphere
-
language:en
-
Short-container-title:The Cryosphere
Author:
McKenzie Jeffrey M.ORCID, Kurylyk Barret L.ORCID, Walvoord Michelle A., Bense Victor F.ORCID, Fortier Daniel, Spence Christopher, Grenier Christophe
Abstract
Abstract. As permafrost thaws in the Arctic, new subsurface pathways open
for the transport of groundwater, energy, and solutes. We identify different
ways that these subsurface changes are driving observed surface
consequences, including the potential for increased contaminant transport,
modification to water resources, and enhanced rates of infrastructure (e.g. buildings and roads) damage. Further, as permafrost thaws it allows
groundwater to transport carbon, nutrients, and other dissolved constituents
from terrestrial to aquatic environments via progressively deeper subsurface
flow paths. Cryohydrogeology, the study of groundwater in cold regions,
should be included in northern research initiatives to account for this
hidden catalyst of environmental and societal change.
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Water Science and Technology
Reference45 articles.
1. Arctic Monitoring and Assessment Programme (AMAP): Snow, Water, Ice, Permafrost in the Arctic (SWIPA), Oslo, Norway,
2017. 2. Avis, C. A., Weaver, A. J., and Meissner, K. J.: Reduction in areal extent of
high-latitude wetlands in response to permafrost thaw, Nat. Geosci., 4,
444–448, https://doi.org/10.1038/ngeo1160, 2011. 3. Biskaborn, B. K., Smith, S. L., Noetzli, J., Matthes, H., Vieira, G.,
Streletskiy, D. A., Schoeneich, P., Romanovsky, V. E., Lewkowicz, A. G.,
Abramov, A., Allard, M., Boike, J., Cable, W. L., Christiansen, H. H.,
Delaloye, R., Diekmann, B., Drozdov, D., Etzelmüller, B., Grosse, G.,
Guglielmin, M., Ingeman-Nielsen, T., Isaksen, K., Ishikawa, M., Johansson,
M., Johannsson, H., Joo, A., Kaverin, D., Kholodov, A., Konstantinov, P.,
Kröger, T., Lambiel, C., Lanckman, J.-P., Luo, D., Malkova, G.,
Meiklejohn, I., Moskalenko, N., Oliva, M., Phillips, M., Ramos, M., Sannel,
A. B. K., Sergeev, D., Seybold, C., Skryabin, P., Vasiliev, A., Wu, Q.,
Yoshikawa, K., Zheleznyak, M., and Lantuit, H.: Permafrost is warming at a
global scale, Nat. Commun., 10, 264, https://doi.org/10.1038/s41467-018-08240-4, 2019. 4. Chen, L., Fortier, D., McKenzie, J. M., and Sliger, M.: Impact of heat
advection on the thermal regime of roads built on permafrost, Hydrol.
Process., 34, 1647–1664, https://doi.org/10.1002/hyp.13688, 2019. 5. Christensen, T. R., Johansson, T., Åkerman, H. J., Mastepanov, M.,
Malmer, N., Friborg, T., Crill, P., and Svensson, B. H.: Thawing sub-arctic
permafrost: Effects on vegetation and methane emissions, Geophys. Res. Lett.,
31, L04501, https://doi.org/10.1029/2003gl018680, 2004.
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|