Measurement–model comparison of stabilized Criegee intermediate and highly oxygenated molecule production in the CLOUD chamber
-
Published:2018-02-19
Issue:4
Volume:18
Page:2363-2380
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Sarnela Nina, Jokinen TuijaORCID, Duplissy Jonathan, Yan ChaoORCID, Nieminen TuomoORCID, Ehn MikaelORCID, Schobesberger SiegfriedORCID, Heinritzi Martin, Ehrhart SebastianORCID, Lehtipalo KatrianneORCID, Tröstl Jasmin, Simon Mario, Kürten Andreas, Leiminger Markus, Lawler Michael J., Rissanen Matti P.ORCID, Bianchi FedericoORCID, Praplan Arnaud P.ORCID, Hakala Jani, Amorim Antonio, Gonin Marc, Hansel ArminORCID, Kirkby JasperORCID, Dommen JosefORCID, Curtius JoachimORCID, Smith James N.ORCID, Petäjä TuukkaORCID, Worsnop Douglas R., Kulmala MarkkuORCID, Donahue Neil M.ORCID, Sipilä Mikko
Abstract
Abstract. Atmospheric oxidation is an important phenomenon which produces large
quantities of low-volatility compounds such as sulfuric acid and oxidized
organic compounds. Such species may be involved in the nucleation of particles
and enhance their subsequent growth to reach the size of cloud condensation
nuclei (CCN). In this study, we investigate α-pinene, the most
abundant monoterpene globally, and its oxidation products formed through
ozonolysis in the Cosmic Leaving OUtdoor Droplets (CLOUD) chamber at CERN
(the European Organization for Nuclear Research). By scavenging hydroxyl
radicals (OH) with hydrogen (H2), we were able to investigate the
formation of highly oxygenated molecules (HOMs) purely driven by ozonolysis
and study the oxidation of sulfur dioxide (SO2) driven by stabilized
Criegee intermediates (sCIs). We measured the concentrations of HOM and
sulfuric acid with a chemical ionization atmospheric-pressure interface
time-of-flight (CI-APi-TOF) mass spectrometer and compared the measured
concentrations with simulated concentrations calculated with a kinetic model.
We found molar yields in the range of 3.5–6.5 % for HOM formation and
22–32 % for the formation of stabilized Criegee intermediates by fitting
our model to the measured sulfuric acid concentrations. The simulated time
evolution of the ozonolysis products was in good agreement with measured
concentrations except that in some of the experiments sulfuric acid formation
was faster than simulated. In those experiments the simulated and measured
concentrations met when the concentration reached a plateau but the plateau
was reached 20–50 min later in the simulations. The results shown here are
consistent with the recently published yields for HOM formation from
different laboratory experiments. Together with the sCI yields, these results
help us to understand atmospheric oxidation processes better and make the
reaction parameters more comprehensive for broader use.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference79 articles.
1. Almeida, J., Schobesberger, S., Kürten, A., Ortega, I. K.,
Kupiainen-Määttä, O., Praplan, A. P., Adamov, A., Amorim, A.,
Bianchi, F., Breitenlechner, M., David, A., Dommen, J., Donahue, N. M.,
Downard, A., Dunne, E., Duplissy, J., Ehrhart, S., Flagan, R. C., Franchin,
A., Guida, R., Hakala, J., Hansel, A., Heinritzi, M., Henschel, H., Jokinen,
T., Junninen, H., Kajos, M., Kangasluoma, J., Keskinen, H., Kupc, A.,
Kurtén, T., Kvashin, A. N., Laaksonen, A., Lehtipalo, K., Leiminger, M.,
Leppä, J., Loukonen, V., Makhmutov, V., Mathot, S., McGrath, M. J.,
Nieminen, T., Olenius, T., Onnela, A., Petäjä, T., Riccobono, F.,
Riipinen, I., Rissanen, M., Rondo, L., Ruuskanen, T., Santos, F. D., Sarnela,
N., Schallhart, S., Schnitzhofer, R., Seinfeld, J. H., Simon, M., Sipilä,
M., Stozhkov, Y., Stratmann, F., Tomé, A., Tröstl, J., Tsagkogeorgas,
G., Vaattovaara, P., Viisanen, Y., Virtanen, A., Vrtala, A., Wagner, P. E.,
Weingartner, E., Wex, H., Williamson, C., Wimmer, D., Ye, P., Yli-Juuti, T.,
Carslaw, K. S., Kulmala, M., Curtius, J., Baltensperger, U., Worsnop, D. R.,
Vehkamäki, H., and Kirkby, J.: Molecular understanding of sulphuric
acid–amine particle nucleation in the atmosphere, Nature, 502, 359–363,
https://doi.org/10.1038/nature12663, 2013. 2. Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F.,
Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J., and IUPAC Subcommittee:
Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II
– gas phase reactions of organic species, Atmos. Chem. Phys., 6, 3625–4055,
https://doi.org/10.5194/acp-6-3625-2006, 2006. 3. Ball, S. M., Hanson, D. R., Eisele, F. L., and McMurry, P. H.: Laboratory
studies of particle nucleation: Initial results for H2SO4, H2O, and
NH3 vapors, J. Geophys. Res., 104, 23709–23718,
https://doi.org/10.1029/1999JD900411, 1999. 4. Berndt, T., Böge, O., Stratmann, F., Heintzenberg, J., and Kulmala, M.:
Rapid formation of sulfuric acid particles at near-atmospheric conditions,
Science, 307, 698–700, https://doi.org/10.1126/science.1104054, 2005. 5. Berndt, T., Stratmann, F., Sipilä, M., Vanhanen, J., Petäjä, T.,
Mikkilä, J., Grüner, A., Spindler, G., Lee Mauldin III, R., Curtius,
J., Kulmala, M., and Heintzenberg, J.: Laboratory study on new particle
formation from the reaction OH + SO2: influence of experimental
conditions, H2O vapour, NH3 and the amine tert-butylamine on the
overall process, Atmos. Chem. Phys., 10, 7101-7116,
https://doi.org/10.5194/acp-10-7101-2010, 2010.
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|