Integrated emission inventory and modeling to assess distribution of particulate matter mass and black carbon composition in Southeast Asia
-
Published:2018-02-26
Issue:4
Volume:18
Page:2725-2747
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Permadi Didin Agustian, Kim Oanh Nguyen ThiORCID, Vautard Robert
Abstract
Abstract. This is part of a research study addressing the potential co-benefits associated with selected black carbon (BC) emission reduction measures on mitigation of air pollution and climate forcing in Southeast Asia (SEA). This paper presents details of emission inventory (EI) results and WRF–CHIMERE model performance evaluation. The SEA regional emissions for 2007 were updated with our EI results for Indonesia, Thailand, and Cambodia and used for the model input. WRF–CHIMERE-simulated 2007 PM10, PM2.5, and BC over the SEA domain (0.25° × 0.25°) and the results were evaluated against the available meteorology and air quality monitoring data in the domain. WRF hourly simulation results were evaluated using the observed data at eight international airport stations in five SEA countries and showed a satisfactory performance. WRF–CHIMERE results for PM10 and PM2.5 showed strong seasonal influence of biomass open burning while the BC distribution showed the influence of urban activities in big SEA cities. Daily average PM10 constructed from the hourly concentrations were obtained from the automatic monitoring stations in three large SEA cities, i.e., Bangkok, Kuala Lumpur, and Surabaya, for model evaluation. The daily observed PM2.5 and BC concentrations obtained from the Improving Air Quality in Asian Developing Countries (AIRPET) project for four cities (i.e., Bangkok, Hanoi, Bandung, and Manila) were also used for model evaluation. In addition, hourly BC concentrations were taken from the measurement results of the Asian Pacific Network (APN) project at a suburban site in Bangkok. The modeled PM10 and BC satisfactorily met all suggested statistical criteria for PM evaluation. The modeled PM2.5∕PM10 ratios estimated for four AIRPET sites ranged between 0.47 and 0.59, lower than observed values of 0.6–0.83. Better agreement was found for BC∕PM2.5 ratios with the modeled values of 0.05–0.33 as compared to the observation values of 0.05–0.28. AODEM (extended aerosol optical depth module) was used to calculate the total columnar aerosol optical depth (AOD) and BC AOD up to the top of the domain at 500 hPa (∼ 5500 m), which did not include the free-tropospheric long-range transport of the pollution. The model AOD results calculated using the internal mixing assumption were evaluated against the observed AOD by both AERONET and MODIS satellite in 10 countries in the domain. Our model results showed that the BC AOD contributed 7.5–12 % of the total AOD, which was in the same range reported by other studies for places with intensive emissions. The results of this paper are used to calculate the regional aerosol direct radiative forcing under different emission reduction scenarios to explore potential co-benefits for air quality improvement, reduction in the number of premature deaths, and climate forcing mitigation in SEA in 2030 (Permadi et al., 2017a).
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference70 articles.
1. Bessagnet, B., Hodzic, A., Vautard, R., Beekmann, M., Cheinet, S., Honoré, C., Liousse, C., and Rouil, L.: Aerosol modeling with CHIMERE – preliminary evaluation at the continental scale, Atmos. Environ., 38, 2803–2817, 2004. 2. Bohren, C. F. and Huffman, D. R.: Absorption and Scattering of Light by Small Particles, Wiley, New York, 1983. 3. Bowden, H. J., Otte, L., Nolte, C. G., and Otte, M. J.: Examining interior grid nudging techniques using two-way nesting in the WRF model for regional climate modeling, J. Climate, 25, 2805–2823, https://doi.org/10.1175/JCLI-D-11-00167.1, 2012. 4. Boylan, J. W. and Russell, A. G.: PM and light extinction model performance metrics, goals, and criteria for three-dimensional air quality models, Atmos. Environ., 40, 4946–4959, 2006. 5. Chen, T. F., Tsai, C. Y., and Chang, K. H.: Performance evaluation of atmospheric particulate matter modeling for East Asia, Atmos. Environ., 77, 365–375, 2013.
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|