Kinetic isotope effects of <sup>12</sup>CH<sub>3</sub>D + OH and <sup>13</sup>CH<sub>3</sub>D + OH from 278 to 313 K
-
Published:2016-04-11
Issue:7
Volume:16
Page:4439-4449
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Joelsson L. M. T., Schmidt J. A.ORCID, Nilsson E. J. K., Blunier T.ORCID, Griffith D. W. T.ORCID, Ono S., Johnson M. S.ORCID
Abstract
Abstract. Methane is the second most important long-lived greenhouse gas and plays a central role in the chemistry of the Earth's atmosphere. Nonetheless there are significant uncertainties in its source budget. Analysis of the isotopic composition of atmospheric methane, including the doubly substituted species 13CH3D, offers new insight into the methane budget as the sources and sinks have distinct isotopic signatures. The most important sink of atmospheric methane is oxidation by OH in the troposphere, which accounts for around 84 % of all methane removal. Here we present experimentally derived methane + OH kinetic isotope effects and their temperature dependence over the range of 278 to 313 K for CH3D and 13CH3D; the latter is reported here for the first time. We find kCH4/kCH3D = 1.31 ± 0.01 and kCH4/k13CH3D = 1.34 ± 0.03 at room temperature, implying that the methane + OH kinetic isotope effect is multiplicative such that (kCH4/k13CH4)(kCH4/kCH3D) = kCH4/k13CH3D, within the experimental uncertainty, given the literature value of kCH4/k13CH4 = 1.0039 ± 0.0002. In addition, the kinetic isotope effects were characterized using transition state theory with tunneling corrections. Good agreement between the experimental, quantum chemical, and available literature values was obtained. Based on the results we conclude that the OH reaction (the main sink of methane) at steady state can produce an atmospheric clumped isotope signal (Δ(13CH3D) = ln([CH4][13CH3D]/[13CH4][CH3D])) of 0.02 ± 0.02. This implies that the bulk tropospheric Δ(13CH3D) reflects the source signal with relatively small adjustment due to the sink signal (i.e., mainly OH oxidation).
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference54 articles.
1. Allan, W., Lowe, D., and Cainey, J.: Active chlorine in the remote marine boundary layer: Modeling anomalous measurements of δ13C in methane, Geophys. Res. Lett., 28, 3239–3242, 2001a. 2. Allan, W., Manning, M., Lassey, K., Lowe, D., and Gomez, A.: Modeling the variation of δ13C in atmospheric methane: Phase ellipses and the kinetic isotope effect, Global Biogeochem. Cy., 15, 467–481, 2001b. 3. Bergamaschi, P., Bräunlich, M., Marik, T., and Brenninkmeijer, C. A.: Measurements of the carbon and hydrogen isotopes of atmospheric methane at Izaña, Tenerife: Seasonal cycles and synoptic-scale variations, J. Geophys. Res.-Atmos., 105, 14531–14546, 2000. 4. Cantrell, C., Shetter, R., Mcdaniel, A., Calvert, J., Davidson, J., Lowe, D., Tyler, S., Cicerone, R., and Greenberg, J.: Carbon Kinetic Isotope Effect in the Oxidation of Methane by the Hydroxyl Radical, J. Geophys. Res., 95, 22455–22462, 1990. 5. Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., DeFries, R., Galloway, J., Heimann, M., Jones, C., Le Quéré, C., Myneni, R., Piao, S., and Thornton, P.: Carbon and Other Biogeochemical Cycles, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|